Derleme
BibTex RIS Kaynak Göster

Dermatolojik Terapötikler ve Cilt Bakımı için Bitkisel Ekstraktların Nano Transdermal İletim Sistemleri

Yıl 2024, Cilt: 9 Sayı: 2, 77 - 105
https://doi.org/10.56171/ojn.1485463

Öz

Bu makalede, dermatolojik terapötikler ve cilt bakımı için bitkisel özler için transdermal iletim sistemlerinin geliştirilmesinde nanoteknolojinin kullanımı tartışılmaktadır. Nanoteknoloji, cilde nüfuz edebilen ve aktif bileşenleri daha etkili bir şekilde iletebilen nanopartiküller oluşturmak için nano ölçekli malzemelerin manipüle edilmesini içerir. Doğal ürünler, terapötik özellikleri ve minimal yan etkileri nedeniyle kozmetikte yaygın olarak kullanılmaktadır; ancak kozmetik ürünlerdeki nanopartiküllerin güvenliği daha fazla araştırma gerektiren bir konudur. Kronik ve iyileşmeyen yaralar hastaların yaşamları için önemli bir tehdit oluşturmaktadır ve yara iyileşmesi için yeni malzemelere ve yaklaşımlara acil ihtiyaç vardır. Nanomateryaller, farklı yapıları sayesinde benzersiz fizikokimyasal özellikler sergileyerek küçük boyut, yüzey ve makroskopik kuantum tünelleme etkileri ile sonuçlanır ve bu da onları yara örtülerinde kullanım için ideal hale getirir. Bitkisel transdermal yamalar daha iyi hasta toleransı, minimum yan etki, yenilenebilir ilaç kaynakları, yaygın kullanılabilirlik ve maliyet etkinliği gibi avantajlar sunmaktadır; ancak talepte daha yavaş büyüme, test zorlukları ve sınırlı bulunabilirlik gibi dezavantajları da vardır. Bu makale, tüketicilerin hem doğal içerikleri hem de reçetesiz tedavileri içeren bir rejimi takip ederek cilt sağlıklarını ve görünümlerini iyileştirebilecekleri sonucuna varmaktadır.

Kaynakça

  • Gupta V, Mohapatra S, Mishra H, Farooq U, Kumar K, Ansari MJ, et al. Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest Advancements. Gels 2022;8:173. https://doi.org/10.3390/gels8030173.
  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2019;25:112. https://doi.org/10.3390/molecules25010112.
  • Qiao L, Han M, Gao S, Shao X, Wang X, Sun L, et al. Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines. J Mater Chem B 2020;8:6333–51. https://doi.org/10.1039/d0tb01260b.
  • Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, et al. The emerging role of nanotechnology in skin care. Advances in Colloid and Interface Science 2021;293:102437. https://doi.org/10.1016/j.cis.2021.102437.
  • Liu J-K. Natural products in cosmetics. Nat Prod Bioprospect 2022;12:40. https://doi.org/10.1007/s13659-022-00363-y.
  • Chauhan A, Chauhan C. Emerging trends of nanotechnology in beauty solutions: A review. Materials Today: Proceedings 2021. https://doi.org/10.1016/j.matpr.2021.04.378.
  • Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S. The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals (Basel) 2020;13:60. https://doi.org/10.3390/ph13040060.
  • Wang M, Huang X, Zheng H, Tang Y, Zeng K, Shao L, et al. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives. Journal of Controlled Release 2021;337:236–47. https://doi.org/10.1016/j.jconrel.2021.07.017.
  • Berthet M, Gauthier Y, Lacroix C, Verrier B, Monge C. Nanoparticle-Based Dressing: The Future of Wound Treatment? Trends Biotechnol 2017;35:770–84. https://doi.org/10.1016/j.tibtech.2017.05.005.
  • Kushwaha A, Goswami L, Kim BS. Nanomaterial-Based Therapy for Wound Healing. Nanomaterials 2022;12:618. https://doi.org/10.3390/nano12040618.
  • Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for Wound Healing and Infection Control. Materials 2019;12:2176. https://doi.org/10.3390/ma12132176.
  • Kaur A, Singh TG, Dhiman S, Arora S, Babbar R. NOVEL HERBS USED IN COSMETICS FOR SKIN AND HAIR CARE : A REVIEW n.d.
  • Mohd-Setapar SH, John CP, Mohd-Nasir H, Azim MM, Ahmad A, Alshammari MB. Application of Nanotechnology Incorporated with Natural Ingredients in Natural Cosmetics. Cosmetics 2022;9:110. https://doi.org/10.3390/cosmetics9060110.
  • Bowe WP, Pugliese S. Cosmetic benefits of natural ingredients. J Drugs Dermatol 2014;13:1021–5; quiz 26–7.
  • Dini I, Laneri S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021;26:3921. https://doi.org/10.3390/molecules26133921.
  • Costa EF, Magalhães WV, Di Stasi LC. Recent Advances in Herbal-Derived Products with Skin Anti-Aging Properties and Cosmetic Applications. Molecules 2022;27:7518. https://doi.org/10.3390/molecules27217518.
  • Nguyen AV, Soulika AM. The Dynamics of the Skin's Immune System. Int J Mol Sci 2019;20:1811. https://doi.org/10.3390/ijms20081811.
  • Juliano C, Magrini GA. Cosmetic Functional Ingredients from Botanical Sources for Anti-Pollution Skincare Products. Cosmetics 2018;5:19. https://doi.org/10.3390/cosmetics5010019.
  • Rodan K, Fields K, Majewski G, Falla T. Skincare Bootcamp: The Evolving Role of Skincare. Plast Reconstr Surg Glob Open 2016;4:e1152. https://doi.org/10.1097/GOX.0000000000001152.
  • Thibane VS, Ndhlala AR, Abdelgadir HA, Finnie JF, Staden JV. The cosmetic potential of plants from the Eastern Cape Province traditionally used for skincare and beauty. South African Journal of Botany 2019;122:475–83. https://doi.org/10.1016/j.sajb.2018.05.003.
  • Hoang HT, Moon J-Y, Lee Y-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021;8:106. https://doi.org/10.3390/cosmetics8040106.
  • Dlova NC, Hamed SH, Tsoka‐Gwegweni J, Grobler A. Skin lightening practices: an epidemiological study of South African women of African and Indian ancestries. British Journal of Dermatology 2015;173:2–9. https://doi.org/10.1111/bjd.13556.
  • Kumar V. Perspective of Natural Products in Skincare. PPIJ 2016;4. https://doi.org/10.15406/ppij.2016.04.00072.
  • He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed Pharmacother 2021;134:111161. https://doi.org/10.1016/j.biopha.2020.111161.
  • Ahmed IA, Mikail MA, Zamakshshari N, Abdullah A-SH. Natural anti-aging skincare: role and potential. Biogerontology 2020;21:293–310. https://doi.org/10.1007/s10522-020-09865-z.
  • Verdier-Sévrain S, Bonté F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol 2007;6:75–82. https://doi.org/10.1111/j.1473-2165.2007.00300.x.
  • Hu X, He H. A review of cosmetic skin delivery. J Cosmet Dermatol 2021;20:2020–30. https://doi.org/10.1111/jocd.14037.
  • Zeng Q, Qi X, Shi G, Zhang M, Haick H. Wound Dressing: From Nanomaterials to Diagnostic Dressings and Healing Evaluations. ACS Nano 2022;16:1708–33. https://doi.org/10.1021/acsnano.1c08411.
  • Antonio JR, Antônio CR, Cardeal ILS, Ballavenuto JMA, Oliveira JR. Nanotechnology in dermatology. An Bras Dermatol 2014;89:126–36. https://doi.org/10.1590/abd1806-4841.20142228.
  • Pereira-Silva M, Martins AM, Sousa-Oliveira I, Ribeiro HM, Veiga F, Marto J, et al. Nanomaterials in hair care and treatment. Acta Biomater 2022;142:14–35. https://doi.org/10.1016/j.actbio.2022.02.025.
  • He M, Zhang W, Liu Z, Zhou L, Cai X, Li R, et al. The interfacial interactions of nanomaterials with human serum albumin. Anal Bioanal Chem 2022;414:4677–84. https://doi.org/10.1007/s00216-022-04089-1.
  • Puglia C, Santonocito D. Cosmeceuticals: Nanotechnology-Based Strategies for the Delivery of Phytocompounds. Curr Pharm Des 2019;25:2314–22. https://doi.org/10.2174/1381612825666190709211101.
  • Santos AC, Panchal A, Rahman N, Pereira-Silva M, Pereira I, Veiga F, et al. Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations. Nanomaterials (Basel) 2019;9:903. https://doi.org/10.3390/nano9060903.
  • Veerabadran NG, Price RR, Lvov YM. Clay nanotubes for encapsulation and sustained release of drugs. NANO 2007;02:115–20. https://doi.org/10.1142/S1793292007000441.
  • Wong WF, Ang KP, Sethi G, Looi CY. Recent Advancement of Medical Patch for Transdermal Drug Delivery. Medicina (Kaunas) 2023;59:778. https://doi.org/10.3390/medicina59040778.
  • Pastore MN, Kalia YN, Horstmann M, Roberts MS. Transdermal patches: history, development and pharmacology. Br J Pharmacol 2015;172:2179–209. https://doi.org/10.1111/bph.13059.
  • Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomaterials Research 2021;25:24. https://doi.org/10.1186/s40824-021-00226-6.
  • Benson HAE. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2005;2:23–33. https://doi.org/10.2174/1567201052772915.
  • Mumtaz N, Imran M, Javaid A, Latif S, Hussain N, Mitu L. Nanomaterials for Targeted Drug Delivery through Skin to Treat Various Diseases: Recent Trends and Future Perspective. Journal of Chemistry 2023;2023:e3861758. https://doi.org/10.1155/2023/3861758.
  • Souto EB, Macedo AS, Dias-Ferreira J, Cano A, Zielińska A, Matos CM. Elastic and Ultradeformable Liposomes for Transdermal Delivery of Active Pharmaceutical Ingredients (APIs). Int J Mol Sci 2021;22:9743. https://doi.org/10.3390/ijms22189743.
  • Bird D, Ravindra NM. Transdermal drug delivery and patches—An overview. MEDICAL DEVICES & SENSORS 2020;3:e10069. https://doi.org/10.1002/mds3.10069.
  • Bos J, Meinardi M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology 2000;9:165–9. https://doi.org/10.1034/j.1600-0625.2000.009003165.x.
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021;20:101–24. https://doi.org/10.1038/s41573-020-0090-8.
  • Patel NA, Patel NJ, Patel RP. Design and evaluation of transdermal drug delivery system for curcumin as an anti-inflammatory drug. Drug Dev Ind Pharm 2009;35:234–42. https://doi.org/10.1080/03639040802266782.
  • Gu Y, Yang M, Tang X, Wang T, Yang D, Zhai G, et al. Lipid nanoparticles loading triptolide for transdermal delivery: mechanisms of penetration enhancement and transport properties. J Nanobiotechnology 2018;16:68. https://doi.org/10.1186/s12951-018-0389-3.
  • Thacharodi D, Rao KP. Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials 1995;16:145–8. https://doi.org/10.1016/0142-9612(95)98278-m.
  • S AS. Transdermal Drug Delivery Systems. Research & Reviews: Journal of Pharmaceutics and Nanotechnology 2016;4:1–7.
  • Qindeel M, Ullah MH, Fakhar-Ud-Din null, Ahmed N, Rehman AU. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J Control Release 2020;327:595–615. https://doi.org/10.1016/j.jconrel.2020.09.016.
  • Akram MR, Ahmad M, Abrar A, Sarfraz RM, Mahmood A. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride. Drug Des Devel Ther 2018;12:349–64. https://doi.org/10.2147/DDDT.S147082.
  • TDDS (Transdermal Drug Delivery System)|OperationsResearch & Development Organization|About Us|Hisamitsu Pharmaceutical co.,inc. n.d. https://global.hisamitsu/operations/tdds.html (accessed December 22, 2023).
  • Bhowmick M, Sengodan T. Mechanisms, kinetics and mathematical modelling of transdermal permeation-an updated review. Pharmacie Globale 2013;4:1.
  • Dhote V, Bhatnagar P, Mishra PK, Mahajan SC, Mishra DK. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System. Sci Pharm 2012;80:1–28. https://doi.org/10.3797/scipharm.1108-20.
  • Zaid Alkilani A, McCrudden MTC, Donnelly RF. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics 2015;7:438–70. https://doi.org/10.3390/pharmaceutics7040438.
  • Kong Y-H, Xu S-P. Juglanin administration protects skin against UVB-induced injury by reducing Nrf2-dependent ROS generation. International Journal of Molecular Medicine 2020;46:67. https://doi.org/10.3892/ijmm.2020.4589.
  • Schoellhammer CM, Blankschtein D, Langer R. Skin Permeabilization for Transdermal Drug Delivery: Recent Advances and Future Prospects. Expert Opin Drug Deliv 2014;11:393–407. https://doi.org/10.1517/17425247.2014.875528.
  • Gratieri T, Alberti I, Lapteva M, Kalia YN. Next generation intra- and transdermal therapeutic systems: using non- and minimally-invasive technologies to increase drug delivery into and across the skin. Eur J Pharm Sci 2013;50:609–22. https://doi.org/10.1016/j.ejps.2013.03.019.
  • Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 2008;26:3197–208. https://doi.org/10.1016/j.vaccine.2008.03.095.
  • Fernandez-Carro E, Angenent M, Gracia-Cazaña T, Gilaberte Y, Alcaine C, Ciriza J. Modeling an Optimal 3D Skin-on-Chip within Microfluidic Devices for Pharmacological Studies. Pharmaceutics 2022;14:1417. https://doi.org/10.3390/pharmaceutics14071417.
  • Ghosh BRJ William Abraham, Tapash K. Transdermal and Topical Drug Delivery Systems. Theory and Practice of Contemporary Pharmaceutics, CRC Press; 2004.
  • Tuan-Mahmood T-M, McCrudden MTC, Torrisi BM, McAlister E, Garland MJ, Singh TRR, et al. Microneedles for intradermal and transdermal delivery. Eur J Pharm Sci 2013;50:623–37. https://doi.org/10.1016/j.ejps.2013.05.005.
  • Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr Drug Deliv 2019;16:444–60. https://doi.org/10.2174/1567201816666190201143457.
  • Suh H, Shin J, Kim Y-C. Microneedle patches for vaccine delivery. Clin Exp Vaccine Res 2014;3:42–9. https://doi.org/10.7774/cevr.2014.3.1.42.
  • Domínguez-Delgado C, Rodríguez Cruz I, López-Cervantes M. The Skin: A Valuable Route for Administration of Drugs. Current Technologies to Increase the Transdermal Delivery of Drugs, 2010, p. 01–22. https://doi.org/10.2174/978160805191511001010001.
  • El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 2008;34:203–22. https://doi.org/10.1016/j.ejps.2008.05.002.
  • Del Rosso JQ, Levin J. The Clinical Relevance of Maintaining the Functional Integrity of the Stratum Corneum in both Healthy and Disease-affected Skin. J Clin Aesthet Dermatol 2011;4:22–42.
  • Wang Y, Xu R, He W, Yao Z, Li H, Zhou J, et al. Three-Dimensional Histological Structures of the Human Dermis. Tissue Eng Part C Methods 2015;21:932–44. https://doi.org/10.1089/ten.TEC.2014.0578.
  • Abdo JM, Sopko NA, Milner SM. The applied anatomy of human skin: A model for regeneration. Wound Medicine 2020;28:100179. https://doi.org/10.1016/j.wndm.2020.100179.
  • Khavkin J, Ellis DAF. Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am 2011;19:229–34. https://doi.org/10.1016/j.fsc.2011.04.003.
  • Ratz-Łyko A, Arct J, Pytkowska K. Moisturizing and Anti-inflammatory Properties of Cosmetic Formulations Containing Centella asiatica Extract. Indian J Pharm Sci 2016;78:27–33.
  • Monton C, Sampaopan Y, Pichayakorn W, Panrat K, Suksaeree J. Herbal transdermal patches made from optimized polyvinyl alcohol blended film: Herbal extraction process, film properties, and in vitro study. Journal of Drug Delivery Science and Technology 2022;69:103170. https://doi.org/10.1016/j.jddst.2022.103170.
  • Kanjani B, Rai G, Gilhotra R, Kohli S, Pandey V. Formulation Design, Optimization and Characterization of Herbal Bioactive Loaded Transdermal Patch: The State of The Art 2018.
  • Mohammed YH, Moghimi HR, Yousef SA, Chandrasekaran NC, Bibi CR, Sukumar SC, et al. Efficacy, Safety and Targets in Topical and Transdermal Active and Excipient Delivery. Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin 2017:369–91. https://doi.org/10.1007/978-3-662-53270-6_23.
  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M del P, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.
  • Souto EB, Fernandes AR, Martins-Gomes C, Coutinho TE, Durazzo A, Lucarini M, et al. Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. Applied Sciences 2020;10:1594. https://doi.org/10.3390/app10051594.
  • Mukherjee B. Nanosize drug delivery system. Curr Pharm Biotechnol 2013;14:1221. https://doi.org/10.2174/138920101415140804121008.
  • Souto EB, Fangueiro JF, Fernandes AR, Cano A, Sanchez-Lopez E, Garcia ML, et al. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon 2022;8:e08938. https://doi.org/10.1016/j.heliyon.2022.e08938.
  • Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol 2012;4:308–19. https://doi.org/10.4161/derm.22804.
  • Rajpoot K. Solid Lipid Nanoparticles: A Promising Nanomaterial in Drug Delivery. Curr Pharm Des 2019;25:3943–59. https://doi.org/10.2174/1381612825666190903155321.
  • Silverberg JI, Jagdeo J, Patel M, Siegel D, Brody N. Green tea extract protects human skin fibroblasts from reactive oxygen species induced necrosis. J Drugs Dermatol 2011;10:1096–101.
  • Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Altınbaş University, Istanbul, Turkey, Otlatici G, Yegen G, Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Altınbaş University, Istanbul, Turkey, Gungor S, Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey, et al. Overview on nanotechnology based cosmeceuticals to prevent skin aging. Istanbul J Pharm 2019;48:55–62. https://doi.org/10.5152/IstanbulJPharm.2018.424278.
  • Surjushe A, Vasani R, Saple DG. Aloe vera: a short review. Indian J Dermatol 2008;53:163–6. https://doi.org/10.4103/0019-5154.44785.
  • Srivastava JK, Shankar E, Gupta S. Chamomile: A herbal medicine of the past with bright future. Mol Med Rep 2010;3:895–901. https://doi.org/10.3892/mmr.2010.377.
  • Preethi KC, Kuttan R. Wound healing activity of flower extract of Calendula officinalis. J Basic Clin Physiol Pharmacol 2009;20:73–9. https://doi.org/10.1515/jbcpp.2009.20.1.73.
  • Kim HM, Cho SH. Lavender oil inhibits immediate-type allergic reaction in mice and rats. J Pharm Pharmacol 1999;51:221–6. https://doi.org/10.1211/0022357991772178.
  • Evangelista MTP, Abad-Casintahan F, Lopez-Villafuerte L. The effect of topical virgin coconut oil on SCORAD index, transepidermal water loss, and skin capacitance in mild to moderate pediatric atopic dermatitis: a randomized, double-blind, clinical trial. Int J Dermatol 2014;53:100–8. https://doi.org/10.1111/ijd.12339.
  • Pazyar N, Yaghoobi R, Ghassemi MR, Kazerouni A, Rafeie E, Jamshydian N. Jojoba in dermatology: a succinct review. G Ital Dermatol Venereol 2013;148:687–91.
  • Lin T-K, Zhong L, Santiago JL. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int J Mol Sci 2017;19:70. https://doi.org/10.3390/ijms19010070.
  • Villa C, Trucchi B, Gambaro R, Baldassari S. Green procedure for the preparation of scented alcohols from carbonyl compounds. Int J Cosmet Sci 2008;30:139–44. https://doi.org/10.1111/j.1468-2494.2008.00431.x.
  • Jose A, Mahey R, Sharma JB, Bhatla N, Saxena R, Kalaivani M, et al. Comparison of ferric Carboxymaltose and iron sucrose complex for treatment of iron deficiency anemia in pregnancy- randomized controlled trial. BMC Pregnancy Childbirth 2019;19:54. https://doi.org/10.1186/s12884-019-2200-3.
  • Thring TS, Hili P, Naughton DP. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells. J Inflamm (Lond) 2011;8:27. https://doi.org/10.1186/1476-9255-8-27.
  • Tang S-C, Yang J-H. Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 2018;23:863. https://doi.org/10.3390/molecules23040863.
  • Telang PS. Vitamin C in dermatology. Indian Dermatol Online J 2013;4:143–6. https://doi.org/10.4103/2229-5178.110593.
  • Gold MH. Use of hyaluronic acid fillers for the treatment of the aging face. Clin Interv Aging 2007;2:369–76.
  • Mukherjee S, Date A, Patravale V, Korting HC, Roeder A, Weindl G. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging 2006;1:327–48.
  • Arif T. Salicylic acid as a peeling agent: a comprehensive review. Clin Cosmet Investig Dermatol 2015;8:455–61. https://doi.org/10.2147/CCID.S84765.
  • Pazyar N, Yaghoobi R, Bagherani N, Kazerouni A. A review of applications of tea tree oil in dermatology. Int J Dermatol 2013;52:784–90. https://doi.org/10.1111/j.1365-4632.2012.05654.x.
  • Lin P-H, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J. Zinc in Wound Healing Modulation. Nutrients 2017;10:16. https://doi.org/10.3390/nu10010016.
  • Ahsan A, tian wenxia, Farooq M, Khan D. An overview of hydrogels and their role in transdermal drug delivery. International Journal of Polymeric Materials 2020;70. https://doi.org/10.1080/00914037.2020.1740989.
  • Defraeye T, Bahrami F, Rossi RM. Inverse Mechanistic Modeling of Transdermal Drug Delivery for Fast Identification of Optimal Model Parameters. Front Pharmacol 2021;12:641111. https://doi.org/10.3389/fphar.2021.641111.
  • Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv 2020;17:145–55. https://doi.org/10.1080/17425247.2020.1713087.
  • Mishra A, Pathak A. Plasticizers: A Vital Excipient in Novel Pharmaceutical Formulations. Current Research in Pharmaceutical Sciences 2017;7:1–10. https://doi.org/10.24092/CRPS.2017.070101.
  • Otterbach A, Lamprecht A. Enhanced Skin Permeation of Estradiol by Dimethyl Sulfoxide Containing Transdermal Patches. Pharmaceutics 2021;13:320. https://doi.org/10.3390/pharmaceutics13030320.
  • Alkilani AZ, Nasereddin J, Hamed R, Nimrawi S, Hussein G, Abo-Zour H, et al. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022;14:1152. https://doi.org/10.3390/pharmaceutics14061152.
  • Akrami-Hasan-Kohal M, Tayebi L, Ghorbani M. Curcumin-loaded naturally-based nanofibers as active wound dressing mats: morphology, drug release, cell proliferation, and cell adhesion studies. New J Chem 2020;44:10343–51. https://doi.org/10.1039/D0NJ01594F.
  • Mishra S, Bishnoi R, Maurya R, Jain D. BOSWELLIA SERRATA ROXB. -A BIOACTIVE HERB WITH VARIOUS PHARMACOLOGICAL ACTIVITIES. Asian Journal of Pharmaceutical and Clinical Research 2020;13:33. https://doi.org/10.22159/ajpcr.2020.v13i11.39354.
  • Chinnasamy G, Chandrasekharan S, Koh TW, Bhatnagar S. Synthesis, Characterization, Antibacterial and Wound Healing Efficacy of Silver Nanoparticles From Azadirachta indica. Front Microbiol 2021;12:611560. https://doi.org/10.3389/fmicb.2021.611560.
  • Sengsuk T, Songtipya P, Kalkornsurapranee E, Johns J, Songtipya L. Active Bio-Based Pressure-Sensitive Adhesive Based Natural Rubber for Food Antimicrobial Applications: Effect of Processing Parameters on Its Adhesion Properties. Polymers 2021;13:199. https://doi.org/10.3390/polym13020199.
  • Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–6.
  • Nematpour N, Farhadian N, Ebrahimi KS, Arkan E, Seyedi F, Khaledian S, et al. Sustained release nanofibrous composite patch for transdermal antibiotic delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;586:124267. https://doi.org/10.1016/j.colsurfa.2019.124267.
  • Al-Hazeem NZA, Al-Hazeem NZA. Nanofibers and Electrospinning Method. IntechOpen; 2018. https://doi.org/10.5772/intechopen.72060.
  • Chinnappan BA, Krishnaswamy M, Xu H, Hoque ME. Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters. Polymers (Basel) 2022;14:3719. https://doi.org/10.3390/polym14183719.
  • Barhoum A, Bechelany M, Hamdy Makhlouf AS. Handbook of Nanofibers. 2019. https://doi.org/10.1007/978-3-319-53655-2.
  • Yarin A, Koombhongse S, Reneker D. Taylor Cone and Jetting from Liquid Droplets in Electrospinning of Nanofibers. Journal of Applied Physics 2001;90:4836–46. https://doi.org/10.1063/1.1408260.
  • Barhoum A, Pal K, Rahier H, Uludag H, Kim IS, Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Applied Materials Today 2019;17:1–35. https://doi.org/10.1016/j.apmt.2019.06.015.
  • Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, et al. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers (Basel) 2022;14:1594. https://doi.org/10.3390/polym14081594.
  • Dokuchaeva AA, Timchenko TP, Karpova EV, Vladimirov SV, Soynov IA, Zhuravleva IY. Effects of Electrospinning Parameter Adjustment on the Mechanical Behavior of Poly-ε-caprolactone Vascular Scaffolds. Polymers (Basel) 2022;14:349. https://doi.org/10.3390/polym14020349.
  • Li H, Chen X, Lu W, Wang J, Xu Y, Guo Y. Application of Electrospinning in Antibacterial Field. Nanomaterials (Basel) 2021;11:1822. https://doi.org/10.3390/nano11071822.
  • Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: A review. J Control Release 2021;334:463–84. https://doi.org/10.1016/j.jconrel.2021.03.033.
  • Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev 2019;119:5298–415. https://doi.org/10.1021/acs.chemrev.8b00593.
  • Sun G, Sun L, Xie H, Liu J. Electrospinning of Nanofibers for Energy Applications. Nanomaterials (Basel) 2016;6:129. https://doi.org/10.3390/nano6070129.
  • Zhang C, Feng F, Zhang H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends in Food Science & Technology 2018;80:175–86. https://doi.org/10.1016/j.tifs.2018.08.005.
  • Tian Y, Zhou J, He C, He L, Li X, Sui H. The Formation, Stabilization and Separation of Oil–Water Emulsions: A Review. Processes 2022;10:738. https://doi.org/10.3390/pr10040738.
  • Wu Y-K, Wang L, Fan J, Shou W, Zhou B-M, Liu Y. Multijet Electrospinning with Auxiliary Electrode: The Influence of Solution Properties. Polymers (Basel) 2018;10:572. https://doi.org/10.3390/polym10060572.
  • Varesano A, Carletto RA, Mazzuchetti G. Experimental investigations on the multijet electrospinning process. Journal of Materials Processing Technology 2009;209:5178–85. https://doi.org/10.1016/j.jmatprotec.2009.03.003.
  • Mohammadalizadeh Z, Bahremandi-Toloue E, Karbasi S. Recent advances in modification strategies of pre- and post-electrospinning of nanofiber scaffolds in tissue engineering. Reactive and Functional Polymers 2022;172:105202. https://doi.org/10.1016/j.reactfunctpolym.2022.105202.
  • Ding B, Kimura E, Sato T, Fujita S, Shiratori S. Fabrication of blend biodegradable nanofibrous nonwoven mats via multijet electrospinning. Polymer 2004;45:1895–902. https://doi.org/10.1016/j.polymer.2004.01.026.
  • Xue J, Xie J, Liu W, Xia Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc Chem Res 2017;50:1976–87. https://doi.org/10.1021/acs.accounts.7b00218.
  • Li D, Yue G, Li S, Liu J, Li H, Gao Y, et al. Fabrication and Applications of Multi-Fluidic Electrospinning Multi-Structure Hollow and Core–Shell Nanofibers. Engineering 2022;13:116–27. https://doi.org/10.1016/j.eng.2021.02.025.
  • Yu D-G, Li J-J, Zhang M, Williams GR. High-quality Janus nanofibers prepared using three-fluid electrospinning. Chem Commun (Camb) 2017;53:4542–5. https://doi.org/10.1039/c7cc01661a.
  • Yu D-G, Yang C, Jin M, Williams GR, Zou H, Wang X, et al. Medicated Janus fibers fabricated using a Teflon-coated side-by-side spinneret. Colloids Surf B Biointerfaces 2016;138:110–6. https://doi.org/10.1016/j.colsurfb.2015.11.055.
  • Zheng X, Kang S, Wang K, Yang Y, Yu D-G, Wan F, et al. Combination of structure-performance and shape-performance relationships for better biphasic release in electrospun Janus fibers. International Journal of Pharmaceutics 2021;596:120203. https://doi.org/10.1016/j.ijpharm.2021.120203.
  • Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, et al. Coaxial electrospun fibers: applications in drug delivery and tissue engineering. WIREs Nanomed Nanobiotechnol 2016;8:654–77. https://doi.org/10.1002/wnan.1391.
  • Pant B, Park M, Park S-J. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019;11:305. https://doi.org/10.3390/pharmaceutics11070305.
  • Rathore P, Schiffman JD. Beyond the Single-Nozzle: Coaxial Electrospinning Enables Innovative Nanofiber Chemistries, Geometries, and Applications. ACS Appl Mater Interfaces 2021;13:48–66. https://doi.org/10.1021/acsami.0c17706.
  • Liu Y, Chen X, Liu Y, Gao Y, Liu P. Electrospun Coaxial Fibers to Optimize the Release of Poorly Water-Soluble Drug. Polymers 2022;14:469. https://doi.org/10.3390/polym14030469.
  • Baykara T, Taylan G. Coaxial electrospinning of PVA/Nigella seed oil nanofibers: Processing and morphological characterization. Materials Science and Engineering: B 2021;265:115012. https://doi.org/10.1016/j.mseb.2020.115012.
  • Liu W, Ni C, Chase D, Rabolt J. Preparation of Multilayer Biodegradable Nanofibers by Triaxial Electrospinning. ACS Macro Letters 2013;2:466–8. https://doi.org/10.1021/mz4000688.
  • Liu X, Yang Y, Yu D-G, Zhu M-J, Zhao M, Williams GR. Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chemical Engineering Journal 2019;356:886–94. https://doi.org/10.1016/j.cej.2018.09.096.
  • Yu D, Wang M, Xiaoyan L, Liu X, Zhu L-M, Bligh S. Multifluid electrospinning for the generation of complex nanostructures. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2019;12:e1601. https://doi.org/10.1002/wnan.1601.
  • Zulkifli MZA, Nordin D, Shaari N, Kamarudin SK. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023;15:2418. https://doi.org/10.3390/polym15112418.
  • Zhang X, Chi C, Chen J, Zhang X, Gong M, Wang X, et al. Electrospun quad-axial nanofibers for controlled and sustained drug delivery. Materials & Design 2021;206:109732. https://doi.org/10.1016/j.matdes.2021.109732.
  • Gonçalves S. Use of enzymes in cosmetics: proposed enzymatic peel procedure 2021;1:29–35.
  • Bié J, Sepodes B, Fernandes PCB, Ribeiro MHL. Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes 2022;10:494. https://doi.org/10.3390/pr10030494.
  • Basso A, Serban S. Overview of Immobilized Enzymes' Applications in Pharmaceutical, Chemical, and Food Industry. Methods Mol Biol 2020;2100:27–63. https://doi.org/10.1007/978-1-0716-0215-7_2.
  • White-Chu EF, Reddy M. Dry skin in the elderly: complexities of a common problem. Clin Dermatol 2011;29:37–42. https://doi.org/10.1016/j.clindermatol.2010.07.005.
  • Clark EW. A brief history of lanolin. Pharm Hist (Lond) 1980;10:5–6.
  • Ertas IF, Uzun M, Altan E, Kabir MH, Gurboga M, Ozakpinar OB, et al. Investigation of silk fibroin-lanolin blended nanofibrous structures. Materials Letters 2023;330:133263. https://doi.org/10.1016/j.matlet.2022.133263.
  • Thau P. Glycerin (glycerol): Current insights into the functional properties of a classic cosmetic raw material. J Cosmet Sci 2002;53:229–36.
  • Fluhr JW, Gloor M, Lehmann L, Lazzerini S, Distante F, Berardesca E. Glycerol accelerates recovery of barrier function in vivo. Acta Derm Venereol 1999;79:418–21. https://doi.org/10.1080/000155599750009825.
  • Gonçalves MM, Lobsinger KL, Carneiro J, Picheth GF, Pires C, Saul CK, et al. Morphological study of electrospun chitosan/poly(vinyl alcohol)/glycerol nanofibres for skin care applications. International Journal of Biological Macromolecules 2022;194:172–8. https://doi.org/10.1016/j.ijbiomac.2021.11.195.
  • Movahedi M, Asefnejad A, Rafienia M, Khorasani MT. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. International Journal of Biological Macromolecules 2020;146:627–37. https://doi.org/10.1016/j.ijbiomac.2019.11.233.
  • Fan L, Cai Z, Zhang K, Han F, Li J, He C, et al. Green electrospun pantothenic acid/silk fibroin composite nanofibers: fabrication, characterization and biological activity. Colloids Surf B Biointerfaces 2014;117:14–20. https://doi.org/10.1016/j.colsurfb.2013.12.030.
  • Gehring W, Gloor M. Effect of topically applied dexpanthenol on epidermal barrier function and stratum corneum hydration. Results of a human in vivo study. Arzneimittelforschung 2000;50:659–63. https://doi.org/10.1055/s-0031-1300268.
  • Biro K, Thaçi D, Ochsendorf FR, Kaufmann R, Boehncke W-H. Efficacy of dexpanthenol in skin protection against irritation: a double-blind, placebo-controlled study. Contact Dermatitis 2003;49:80–4. https://doi.org/10.1111/j.0105-1873.2003.00184.x.
  • Kazsoki A, Palcsó B, Alpár A, Snoeck R, Andrei G, Zelkó R. Formulation of acyclovir (core)-dexpanthenol (sheath) nanofibrous patches for the treatment of herpes labialis. Int J Pharm 2022;611:121354. https://doi.org/10.1016/j.ijpharm.2021.121354.
  • Jin YH, Lee SJ, Chung MH, Park JH, Park YI, Cho TH, et al. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism. Arch Pharm Res 1999;22:232–6. https://doi.org/10.1007/BF02976355.
  • Wahedi HM, Jeong M, Chae JK, Do SG, Yoon H, Kim SY. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo. Phytomedicine 2017;28:19–26. https://doi.org/10.1016/j.phymed.2017.02.005.
  • Zhu W, Gao J. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J Investig Dermatol Symp Proc 2008;13:20–4. https://doi.org/10.1038/jidsymp.2008.8.
  • Gupta S, Dutta P, Acharya V, Prasad P, Roy A, Bit A. Accelerating skin barrier repair using novel bioactive magnesium-doped nanofibers of non-mulberry silk fibroin during wound healing. Journal of Bioactive and Compatible Polymers 2022;37:38–52. https://doi.org/10.1177/08839115211061737.
  • Liu Y, Qin Y, Bai R, Zhang X, Yuan L, Liu J. Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. International Journal of Biological Macromolecules 2019;134:993–1001. https://doi.org/10.1016/j.ijbiomac.2019.05.175.
  • Hakozaki T, Minwalla L, Zhuang J, Chhoa M, Matsubara A, Miyamoto K, et al. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br J Dermatol 2002;147:20–31. https://doi.org/10.1046/j.1365-2133.2002.04834.x.
  • Nada A, Hassabo A, Mohamed A, Zaghloul S. Encapsulation of Nicotinamide into Cellulose Based Electrospun Fibers. Journal of Applied Pharmaceutical Science 2016;6:013–21. https://doi.org/10.7324/JAPS.2016.60803.
  • Katiyar SK, Ahmad N, Mukhtar H. Green tea and skin. Arch Dermatol 2000;136:989–94. https://doi.org/10.1001/archderm.136.8.989.
  • Sadri .Minoo, Arab-Sorkhi S, Vatani H, Bagheri Pebdeni A. New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method. Fibers and Polymers 2015;16:1742–50. https://doi.org/10.1007/s12221-015-5297-7.
  • De Spirt S, Stahl W, Tronnier H, Sies H, Bejot M, Maurette J-M, et al. Intervention with flaxseed and borage oil supplements modulates skin condition in women. Br J Nutr 2009;101:440–5. https://doi.org/10.1017/S0007114508020321.
  • Hadad S, Goli S. Improving Oxidative Stability of Flaxseed Oil by Encapsulation in Electrospun Flaxseed Mucilage Nanofiber. Food and Bioprocess Technology 2019;12. https://doi.org/10.1007/s11947-019-02259-1.
  • Hadad S, Goli S. Fabrication and characterization of electrospun nanofibers using flaxseed ( Linum usitatissimum ) mucilage. International Journal of Biological Macromolecules 2018;114. https://doi.org/10.1016/j.ijbiomac.2018.03.154.
  • Staniforth V, Chiu L-T, Yang N-S. Caffeic acid suppresses UVB radiation-induced expression of interleukin-10 and activation of mitogen-activated protein kinases in mouse. Carcinogenesis 2006;27:1803–11. https://doi.org/10.1093/carcin/bgl006.
  • Saija A, Tomaino A, Trombetta D, De Pasquale A, Uccella N, Barbuzzi T, et al. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int J Pharm 2000;199:39–47. https://doi.org/10.1016/s0378-5173(00)00358-6.
  • Vilchez A, Acevedo F, Cea M, Seeger M, Navia R. Applications of Electrospun Nanofibers with Antioxidant Properties: A Review. Nanomaterials 2020;10:175. https://doi.org/10.3390/nano10010175.
  • Kaya S, Yilmaz DE, Akmayan I, Egri O, Arasoglu T, Derman S. Caffeic Acid Phenethyl Ester Loaded Electrospun Nanofibers for Wound Dressing Application. J Pharm Sci 2022;111:734–42. https://doi.org/10.1016/j.xphs.2021.09.041.
  • Wang Q-J, Gao X, Gong H, Lin X-R, Saint-Leger D, Senee J. Chemical stability and degradation mechanisms of ferulic acid (FA) within various cosmetic formulations. J Cosmet Sci 2011;62:483–503.
  • Vashisth P, Kumar N, Sharma M, Pruthi V. Biomedical applications of ferulic acid encapsulated electrospun nanofibers. Biotechnol Rep (Amst) 2015;8:36–44. https://doi.org/10.1016/j.btre.2015.08.008.
  • Charurin P, Ames JM, del Castillo MD. Antioxidant activity of coffee model systems. J Agric Food Chem 2002;50:3751–6. https://doi.org/10.1021/jf011703i.
  • Sheng X, Fan L, He C, Zhang K, Mo X, Wang H. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. Int J Biol Macromol 2013;56:49–56. https://doi.org/10.1016/j.ijbiomac.2013.01.029.
  • Taepaiboon P, Rungsardthong U, Supaphol P. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur J Pharm Biopharm 2007;67:387–97. https://doi.org/10.1016/j.ejpb.2007.03.018.
  • Israili ZH. Antimicrobial properties of honey. Am J Ther 2014;21:304–23. https://doi.org/10.1097/MJT.0b013e318293b09b.
  • Ediriweera ERHSS, Premarathna NYS. Medicinal and cosmetic uses of Bee's Honey - A review. Ayu 2012;33:178–82. https://doi.org/10.4103/0974-8520.105233.
  • Pakolpakçıl A, Draczynski Z. Green Approach to Develop Bee Pollen-Loaded Alginate Based Nanofibrous Mat. Materials 2021;14:2775. https://doi.org/10.3390/ma14112775.
  • Ionescu OM, Mignon A, Iacob AT, Simionescu N, Confederat LG, Tuchilus C, et al. New Hyaluronic Acid/Polyethylene Oxide-Based Electrospun Nanofibers: Design, Characterization and In Vitro Biological Evaluation. Polymers (Basel) 2021;13:1291. https://doi.org/10.3390/polym13081291.
  • Pugazhenthi K, Kapoor M, Clarkson AN, Hall I, Appleton I. Melatonin accelerates the process of wound repair in full-thickness incisional wounds. J Pineal Res 2008;44:387–96. https://doi.org/10.1111/j.1600-079X.2007.00541.x.
  • Morganti P. Melatonin and immunostimulating substance-based compositions. EP1991222B1, 2016.
  • Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int J Pharm 2021;596:120213. https://doi.org/10.1016/j.ijpharm.2021.120213.
  • Rahman S, Carter P, Bhattarai N. Aloe Vera for Tissue Engineering Applications. JFB 2017;8:6. https://doi.org/10.3390/jfb8010006.
  • Barbosa R, Villarreal A, Rodriguez C, De Leon H, Gilkerson R, Lozano K. Aloe Vera extract-based composite nanofibers for wound dressing applications. Mater Sci Eng C Mater Biol Appl 2021;124:112061. https://doi.org/10.1016/j.msec.2021.112061.

Nano Transdermal Delivery Systems of Herbal Extracts for Dermatological Therapeutics and Skin Care

Yıl 2024, Cilt: 9 Sayı: 2, 77 - 105
https://doi.org/10.56171/ojn.1485463

Öz

This article discusses the use of nanotechnology in the development of transdermal delivery systems for herbal extracts for dermatological therapeutics and skin care. Nanotechnology involves manipulating nanoscale materials to create nanoparticles that can penetrate the skin and deliver active ingredients more effectively. Natural products are commonly used in cosmetics because of their therapeutic properties and minimal side effects; however, the safety of nanoparticles in cosmetic products is a concern that requires further research. Chronic and nonhealing wounds pose a significant threat to patients’ lives, and there is a pressing need for novel materials and approaches to wound healing. Nanomaterials exhibit unique physicochemical properties owing to their distinct structures, resulting in small size, surface, and macroscopic quantum tunnelling effects, making them ideal for use in wound dressings. Herbal transdermal patches offer advantages such as better patient tolerance, minimal side effects, renewable sources of medication, extensive availability, and cost-effectiveness; however, they also have disadvantages such as slower growth in demand, testing difficulties, and limited availability. This article concludes that by following a regimen that includes both natural ingredients and over-the-counter treatments, consumers can improve their skin health and appearance.

Kaynakça

  • Gupta V, Mohapatra S, Mishra H, Farooq U, Kumar K, Ansari MJ, et al. Nanotechnology in Cosmetics and Cosmeceuticals—A Review of Latest Advancements. Gels 2022;8:173. https://doi.org/10.3390/gels8030173.
  • Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2019;25:112. https://doi.org/10.3390/molecules25010112.
  • Qiao L, Han M, Gao S, Shao X, Wang X, Sun L, et al. Research progress on nanotechnology for delivery of active ingredients from traditional Chinese medicines. J Mater Chem B 2020;8:6333–51. https://doi.org/10.1039/d0tb01260b.
  • Salvioni L, Morelli L, Ochoa E, Labra M, Fiandra L, Palugan L, et al. The emerging role of nanotechnology in skin care. Advances in Colloid and Interface Science 2021;293:102437. https://doi.org/10.1016/j.cis.2021.102437.
  • Liu J-K. Natural products in cosmetics. Nat Prod Bioprospect 2022;12:40. https://doi.org/10.1007/s13659-022-00363-y.
  • Chauhan A, Chauhan C. Emerging trends of nanotechnology in beauty solutions: A review. Materials Today: Proceedings 2021. https://doi.org/10.1016/j.matpr.2021.04.378.
  • Spampinato SF, Caruso GI, De Pasquale R, Sortino MA, Merlo S. The Treatment of Impaired Wound Healing in Diabetes: Looking among Old Drugs. Pharmaceuticals (Basel) 2020;13:60. https://doi.org/10.3390/ph13040060.
  • Wang M, Huang X, Zheng H, Tang Y, Zeng K, Shao L, et al. Nanomaterials applied in wound healing: Mechanisms, limitations and perspectives. Journal of Controlled Release 2021;337:236–47. https://doi.org/10.1016/j.jconrel.2021.07.017.
  • Berthet M, Gauthier Y, Lacroix C, Verrier B, Monge C. Nanoparticle-Based Dressing: The Future of Wound Treatment? Trends Biotechnol 2017;35:770–84. https://doi.org/10.1016/j.tibtech.2017.05.005.
  • Kushwaha A, Goswami L, Kim BS. Nanomaterial-Based Therapy for Wound Healing. Nanomaterials 2022;12:618. https://doi.org/10.3390/nano12040618.
  • Mihai MM, Dima MB, Dima B, Holban AM. Nanomaterials for Wound Healing and Infection Control. Materials 2019;12:2176. https://doi.org/10.3390/ma12132176.
  • Kaur A, Singh TG, Dhiman S, Arora S, Babbar R. NOVEL HERBS USED IN COSMETICS FOR SKIN AND HAIR CARE : A REVIEW n.d.
  • Mohd-Setapar SH, John CP, Mohd-Nasir H, Azim MM, Ahmad A, Alshammari MB. Application of Nanotechnology Incorporated with Natural Ingredients in Natural Cosmetics. Cosmetics 2022;9:110. https://doi.org/10.3390/cosmetics9060110.
  • Bowe WP, Pugliese S. Cosmetic benefits of natural ingredients. J Drugs Dermatol 2014;13:1021–5; quiz 26–7.
  • Dini I, Laneri S. The New Challenge of Green Cosmetics: Natural Food Ingredients for Cosmetic Formulations. Molecules 2021;26:3921. https://doi.org/10.3390/molecules26133921.
  • Costa EF, Magalhães WV, Di Stasi LC. Recent Advances in Herbal-Derived Products with Skin Anti-Aging Properties and Cosmetic Applications. Molecules 2022;27:7518. https://doi.org/10.3390/molecules27217518.
  • Nguyen AV, Soulika AM. The Dynamics of the Skin's Immune System. Int J Mol Sci 2019;20:1811. https://doi.org/10.3390/ijms20081811.
  • Juliano C, Magrini GA. Cosmetic Functional Ingredients from Botanical Sources for Anti-Pollution Skincare Products. Cosmetics 2018;5:19. https://doi.org/10.3390/cosmetics5010019.
  • Rodan K, Fields K, Majewski G, Falla T. Skincare Bootcamp: The Evolving Role of Skincare. Plast Reconstr Surg Glob Open 2016;4:e1152. https://doi.org/10.1097/GOX.0000000000001152.
  • Thibane VS, Ndhlala AR, Abdelgadir HA, Finnie JF, Staden JV. The cosmetic potential of plants from the Eastern Cape Province traditionally used for skincare and beauty. South African Journal of Botany 2019;122:475–83. https://doi.org/10.1016/j.sajb.2018.05.003.
  • Hoang HT, Moon J-Y, Lee Y-C. Natural Antioxidants from Plant Extracts in Skincare Cosmetics: Recent Applications, Challenges and Perspectives. Cosmetics 2021;8:106. https://doi.org/10.3390/cosmetics8040106.
  • Dlova NC, Hamed SH, Tsoka‐Gwegweni J, Grobler A. Skin lightening practices: an epidemiological study of South African women of African and Indian ancestries. British Journal of Dermatology 2015;173:2–9. https://doi.org/10.1111/bjd.13556.
  • Kumar V. Perspective of Natural Products in Skincare. PPIJ 2016;4. https://doi.org/10.15406/ppij.2016.04.00072.
  • He H, Li A, Li S, Tang J, Li L, Xiong L. Natural components in sunscreens: Topical formulations with sun protection factor (SPF). Biomed Pharmacother 2021;134:111161. https://doi.org/10.1016/j.biopha.2020.111161.
  • Ahmed IA, Mikail MA, Zamakshshari N, Abdullah A-SH. Natural anti-aging skincare: role and potential. Biogerontology 2020;21:293–310. https://doi.org/10.1007/s10522-020-09865-z.
  • Verdier-Sévrain S, Bonté F. Skin hydration: a review on its molecular mechanisms. J Cosmet Dermatol 2007;6:75–82. https://doi.org/10.1111/j.1473-2165.2007.00300.x.
  • Hu X, He H. A review of cosmetic skin delivery. J Cosmet Dermatol 2021;20:2020–30. https://doi.org/10.1111/jocd.14037.
  • Zeng Q, Qi X, Shi G, Zhang M, Haick H. Wound Dressing: From Nanomaterials to Diagnostic Dressings and Healing Evaluations. ACS Nano 2022;16:1708–33. https://doi.org/10.1021/acsnano.1c08411.
  • Antonio JR, Antônio CR, Cardeal ILS, Ballavenuto JMA, Oliveira JR. Nanotechnology in dermatology. An Bras Dermatol 2014;89:126–36. https://doi.org/10.1590/abd1806-4841.20142228.
  • Pereira-Silva M, Martins AM, Sousa-Oliveira I, Ribeiro HM, Veiga F, Marto J, et al. Nanomaterials in hair care and treatment. Acta Biomater 2022;142:14–35. https://doi.org/10.1016/j.actbio.2022.02.025.
  • He M, Zhang W, Liu Z, Zhou L, Cai X, Li R, et al. The interfacial interactions of nanomaterials with human serum albumin. Anal Bioanal Chem 2022;414:4677–84. https://doi.org/10.1007/s00216-022-04089-1.
  • Puglia C, Santonocito D. Cosmeceuticals: Nanotechnology-Based Strategies for the Delivery of Phytocompounds. Curr Pharm Des 2019;25:2314–22. https://doi.org/10.2174/1381612825666190709211101.
  • Santos AC, Panchal A, Rahman N, Pereira-Silva M, Pereira I, Veiga F, et al. Evolution of Hair Treatment and Care: Prospects of Nanotube-Based Formulations. Nanomaterials (Basel) 2019;9:903. https://doi.org/10.3390/nano9060903.
  • Veerabadran NG, Price RR, Lvov YM. Clay nanotubes for encapsulation and sustained release of drugs. NANO 2007;02:115–20. https://doi.org/10.1142/S1793292007000441.
  • Wong WF, Ang KP, Sethi G, Looi CY. Recent Advancement of Medical Patch for Transdermal Drug Delivery. Medicina (Kaunas) 2023;59:778. https://doi.org/10.3390/medicina59040778.
  • Pastore MN, Kalia YN, Horstmann M, Roberts MS. Transdermal patches: history, development and pharmacology. Br J Pharmacol 2015;172:2179–209. https://doi.org/10.1111/bph.13059.
  • Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomaterials Research 2021;25:24. https://doi.org/10.1186/s40824-021-00226-6.
  • Benson HAE. Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2005;2:23–33. https://doi.org/10.2174/1567201052772915.
  • Mumtaz N, Imran M, Javaid A, Latif S, Hussain N, Mitu L. Nanomaterials for Targeted Drug Delivery through Skin to Treat Various Diseases: Recent Trends and Future Perspective. Journal of Chemistry 2023;2023:e3861758. https://doi.org/10.1155/2023/3861758.
  • Souto EB, Macedo AS, Dias-Ferreira J, Cano A, Zielińska A, Matos CM. Elastic and Ultradeformable Liposomes for Transdermal Delivery of Active Pharmaceutical Ingredients (APIs). Int J Mol Sci 2021;22:9743. https://doi.org/10.3390/ijms22189743.
  • Bird D, Ravindra NM. Transdermal drug delivery and patches—An overview. MEDICAL DEVICES & SENSORS 2020;3:e10069. https://doi.org/10.1002/mds3.10069.
  • Bos J, Meinardi M. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Experimental Dermatology 2000;9:165–9. https://doi.org/10.1034/j.1600-0625.2000.009003165.x.
  • Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021;20:101–24. https://doi.org/10.1038/s41573-020-0090-8.
  • Patel NA, Patel NJ, Patel RP. Design and evaluation of transdermal drug delivery system for curcumin as an anti-inflammatory drug. Drug Dev Ind Pharm 2009;35:234–42. https://doi.org/10.1080/03639040802266782.
  • Gu Y, Yang M, Tang X, Wang T, Yang D, Zhai G, et al. Lipid nanoparticles loading triptolide for transdermal delivery: mechanisms of penetration enhancement and transport properties. J Nanobiotechnology 2018;16:68. https://doi.org/10.1186/s12951-018-0389-3.
  • Thacharodi D, Rao KP. Development and in vitro evaluation of chitosan-based transdermal drug delivery systems for the controlled delivery of propranolol hydrochloride. Biomaterials 1995;16:145–8. https://doi.org/10.1016/0142-9612(95)98278-m.
  • S AS. Transdermal Drug Delivery Systems. Research & Reviews: Journal of Pharmaceutics and Nanotechnology 2016;4:1–7.
  • Qindeel M, Ullah MH, Fakhar-Ud-Din null, Ahmed N, Rehman AU. Recent trends, challenges and future outlook of transdermal drug delivery systems for rheumatoid arthritis therapy. J Control Release 2020;327:595–615. https://doi.org/10.1016/j.jconrel.2020.09.016.
  • Akram MR, Ahmad M, Abrar A, Sarfraz RM, Mahmood A. Formulation design and development of matrix diffusion controlled transdermal drug delivery of glimepiride. Drug Des Devel Ther 2018;12:349–64. https://doi.org/10.2147/DDDT.S147082.
  • TDDS (Transdermal Drug Delivery System)|OperationsResearch & Development Organization|About Us|Hisamitsu Pharmaceutical co.,inc. n.d. https://global.hisamitsu/operations/tdds.html (accessed December 22, 2023).
  • Bhowmick M, Sengodan T. Mechanisms, kinetics and mathematical modelling of transdermal permeation-an updated review. Pharmacie Globale 2013;4:1.
  • Dhote V, Bhatnagar P, Mishra PK, Mahajan SC, Mishra DK. Iontophoresis: A Potential Emergence of a Transdermal Drug Delivery System. Sci Pharm 2012;80:1–28. https://doi.org/10.3797/scipharm.1108-20.
  • Zaid Alkilani A, McCrudden MTC, Donnelly RF. Transdermal Drug Delivery: Innovative Pharmaceutical Developments Based on Disruption of the Barrier Properties of the stratum corneum. Pharmaceutics 2015;7:438–70. https://doi.org/10.3390/pharmaceutics7040438.
  • Kong Y-H, Xu S-P. Juglanin administration protects skin against UVB-induced injury by reducing Nrf2-dependent ROS generation. International Journal of Molecular Medicine 2020;46:67. https://doi.org/10.3892/ijmm.2020.4589.
  • Schoellhammer CM, Blankschtein D, Langer R. Skin Permeabilization for Transdermal Drug Delivery: Recent Advances and Future Prospects. Expert Opin Drug Deliv 2014;11:393–407. https://doi.org/10.1517/17425247.2014.875528.
  • Gratieri T, Alberti I, Lapteva M, Kalia YN. Next generation intra- and transdermal therapeutic systems: using non- and minimally-invasive technologies to increase drug delivery into and across the skin. Eur J Pharm Sci 2013;50:609–22. https://doi.org/10.1016/j.ejps.2013.03.019.
  • Lambert PH, Laurent PE. Intradermal vaccine delivery: will new delivery systems transform vaccine administration? Vaccine 2008;26:3197–208. https://doi.org/10.1016/j.vaccine.2008.03.095.
  • Fernandez-Carro E, Angenent M, Gracia-Cazaña T, Gilaberte Y, Alcaine C, Ciriza J. Modeling an Optimal 3D Skin-on-Chip within Microfluidic Devices for Pharmacological Studies. Pharmaceutics 2022;14:1417. https://doi.org/10.3390/pharmaceutics14071417.
  • Ghosh BRJ William Abraham, Tapash K. Transdermal and Topical Drug Delivery Systems. Theory and Practice of Contemporary Pharmaceutics, CRC Press; 2004.
  • Tuan-Mahmood T-M, McCrudden MTC, Torrisi BM, McAlister E, Garland MJ, Singh TRR, et al. Microneedles for intradermal and transdermal delivery. Eur J Pharm Sci 2013;50:623–37. https://doi.org/10.1016/j.ejps.2013.05.005.
  • Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr Drug Deliv 2019;16:444–60. https://doi.org/10.2174/1567201816666190201143457.
  • Suh H, Shin J, Kim Y-C. Microneedle patches for vaccine delivery. Clin Exp Vaccine Res 2014;3:42–9. https://doi.org/10.7774/cevr.2014.3.1.42.
  • Domínguez-Delgado C, Rodríguez Cruz I, López-Cervantes M. The Skin: A Valuable Route for Administration of Drugs. Current Technologies to Increase the Transdermal Delivery of Drugs, 2010, p. 01–22. https://doi.org/10.2174/978160805191511001010001.
  • El Maghraby GM, Barry BW, Williams AC. Liposomes and skin: from drug delivery to model membranes. Eur J Pharm Sci 2008;34:203–22. https://doi.org/10.1016/j.ejps.2008.05.002.
  • Del Rosso JQ, Levin J. The Clinical Relevance of Maintaining the Functional Integrity of the Stratum Corneum in both Healthy and Disease-affected Skin. J Clin Aesthet Dermatol 2011;4:22–42.
  • Wang Y, Xu R, He W, Yao Z, Li H, Zhou J, et al. Three-Dimensional Histological Structures of the Human Dermis. Tissue Eng Part C Methods 2015;21:932–44. https://doi.org/10.1089/ten.TEC.2014.0578.
  • Abdo JM, Sopko NA, Milner SM. The applied anatomy of human skin: A model for regeneration. Wound Medicine 2020;28:100179. https://doi.org/10.1016/j.wndm.2020.100179.
  • Khavkin J, Ellis DAF. Aging skin: histology, physiology, and pathology. Facial Plast Surg Clin North Am 2011;19:229–34. https://doi.org/10.1016/j.fsc.2011.04.003.
  • Ratz-Łyko A, Arct J, Pytkowska K. Moisturizing and Anti-inflammatory Properties of Cosmetic Formulations Containing Centella asiatica Extract. Indian J Pharm Sci 2016;78:27–33.
  • Monton C, Sampaopan Y, Pichayakorn W, Panrat K, Suksaeree J. Herbal transdermal patches made from optimized polyvinyl alcohol blended film: Herbal extraction process, film properties, and in vitro study. Journal of Drug Delivery Science and Technology 2022;69:103170. https://doi.org/10.1016/j.jddst.2022.103170.
  • Kanjani B, Rai G, Gilhotra R, Kohli S, Pandey V. Formulation Design, Optimization and Characterization of Herbal Bioactive Loaded Transdermal Patch: The State of The Art 2018.
  • Mohammed YH, Moghimi HR, Yousef SA, Chandrasekaran NC, Bibi CR, Sukumar SC, et al. Efficacy, Safety and Targets in Topical and Transdermal Active and Excipient Delivery. Percutaneous Penetration Enhancers Drug Penetration Into/Through the Skin 2017:369–91. https://doi.org/10.1007/978-3-662-53270-6_23.
  • Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres M del P, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 2018;16:71. https://doi.org/10.1186/s12951-018-0392-8.
  • Souto EB, Fernandes AR, Martins-Gomes C, Coutinho TE, Durazzo A, Lucarini M, et al. Nanomaterials for Skin Delivery of Cosmeceuticals and Pharmaceuticals. Applied Sciences 2020;10:1594. https://doi.org/10.3390/app10051594.
  • Mukherjee B. Nanosize drug delivery system. Curr Pharm Biotechnol 2013;14:1221. https://doi.org/10.2174/138920101415140804121008.
  • Souto EB, Fangueiro JF, Fernandes AR, Cano A, Sanchez-Lopez E, Garcia ML, et al. Physicochemical and biopharmaceutical aspects influencing skin permeation and role of SLN and NLC for skin drug delivery. Heliyon 2022;8:e08938. https://doi.org/10.1016/j.heliyon.2022.e08938.
  • Ganceviciene R, Liakou AI, Theodoridis A, Makrantonaki E, Zouboulis CC. Skin anti-aging strategies. Dermatoendocrinol 2012;4:308–19. https://doi.org/10.4161/derm.22804.
  • Rajpoot K. Solid Lipid Nanoparticles: A Promising Nanomaterial in Drug Delivery. Curr Pharm Des 2019;25:3943–59. https://doi.org/10.2174/1381612825666190903155321.
  • Silverberg JI, Jagdeo J, Patel M, Siegel D, Brody N. Green tea extract protects human skin fibroblasts from reactive oxygen species induced necrosis. J Drugs Dermatol 2011;10:1096–101.
  • Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Altınbaş University, Istanbul, Turkey, Otlatici G, Yegen G, Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul Altınbaş University, Istanbul, Turkey, Gungor S, Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34116, Istanbul, Turkey, et al. Overview on nanotechnology based cosmeceuticals to prevent skin aging. Istanbul J Pharm 2019;48:55–62. https://doi.org/10.5152/IstanbulJPharm.2018.424278.
  • Surjushe A, Vasani R, Saple DG. Aloe vera: a short review. Indian J Dermatol 2008;53:163–6. https://doi.org/10.4103/0019-5154.44785.
  • Srivastava JK, Shankar E, Gupta S. Chamomile: A herbal medicine of the past with bright future. Mol Med Rep 2010;3:895–901. https://doi.org/10.3892/mmr.2010.377.
  • Preethi KC, Kuttan R. Wound healing activity of flower extract of Calendula officinalis. J Basic Clin Physiol Pharmacol 2009;20:73–9. https://doi.org/10.1515/jbcpp.2009.20.1.73.
  • Kim HM, Cho SH. Lavender oil inhibits immediate-type allergic reaction in mice and rats. J Pharm Pharmacol 1999;51:221–6. https://doi.org/10.1211/0022357991772178.
  • Evangelista MTP, Abad-Casintahan F, Lopez-Villafuerte L. The effect of topical virgin coconut oil on SCORAD index, transepidermal water loss, and skin capacitance in mild to moderate pediatric atopic dermatitis: a randomized, double-blind, clinical trial. Int J Dermatol 2014;53:100–8. https://doi.org/10.1111/ijd.12339.
  • Pazyar N, Yaghoobi R, Ghassemi MR, Kazerouni A, Rafeie E, Jamshydian N. Jojoba in dermatology: a succinct review. G Ital Dermatol Venereol 2013;148:687–91.
  • Lin T-K, Zhong L, Santiago JL. Anti-Inflammatory and Skin Barrier Repair Effects of Topical Application of Some Plant Oils. Int J Mol Sci 2017;19:70. https://doi.org/10.3390/ijms19010070.
  • Villa C, Trucchi B, Gambaro R, Baldassari S. Green procedure for the preparation of scented alcohols from carbonyl compounds. Int J Cosmet Sci 2008;30:139–44. https://doi.org/10.1111/j.1468-2494.2008.00431.x.
  • Jose A, Mahey R, Sharma JB, Bhatla N, Saxena R, Kalaivani M, et al. Comparison of ferric Carboxymaltose and iron sucrose complex for treatment of iron deficiency anemia in pregnancy- randomized controlled trial. BMC Pregnancy Childbirth 2019;19:54. https://doi.org/10.1186/s12884-019-2200-3.
  • Thring TS, Hili P, Naughton DP. Antioxidant and potential anti-inflammatory activity of extracts and formulations of white tea, rose, and witch hazel on primary human dermal fibroblast cells. J Inflamm (Lond) 2011;8:27. https://doi.org/10.1186/1476-9255-8-27.
  • Tang S-C, Yang J-H. Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 2018;23:863. https://doi.org/10.3390/molecules23040863.
  • Telang PS. Vitamin C in dermatology. Indian Dermatol Online J 2013;4:143–6. https://doi.org/10.4103/2229-5178.110593.
  • Gold MH. Use of hyaluronic acid fillers for the treatment of the aging face. Clin Interv Aging 2007;2:369–76.
  • Mukherjee S, Date A, Patravale V, Korting HC, Roeder A, Weindl G. Retinoids in the treatment of skin aging: an overview of clinical efficacy and safety. Clin Interv Aging 2006;1:327–48.
  • Arif T. Salicylic acid as a peeling agent: a comprehensive review. Clin Cosmet Investig Dermatol 2015;8:455–61. https://doi.org/10.2147/CCID.S84765.
  • Pazyar N, Yaghoobi R, Bagherani N, Kazerouni A. A review of applications of tea tree oil in dermatology. Int J Dermatol 2013;52:784–90. https://doi.org/10.1111/j.1365-4632.2012.05654.x.
  • Lin P-H, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J. Zinc in Wound Healing Modulation. Nutrients 2017;10:16. https://doi.org/10.3390/nu10010016.
  • Ahsan A, tian wenxia, Farooq M, Khan D. An overview of hydrogels and their role in transdermal drug delivery. International Journal of Polymeric Materials 2020;70. https://doi.org/10.1080/00914037.2020.1740989.
  • Defraeye T, Bahrami F, Rossi RM. Inverse Mechanistic Modeling of Transdermal Drug Delivery for Fast Identification of Optimal Model Parameters. Front Pharmacol 2021;12:641111. https://doi.org/10.3389/fphar.2021.641111.
  • Kováčik A, Kopečná M, Vávrová K. Permeation enhancers in transdermal drug delivery: benefits and limitations. Expert Opin Drug Deliv 2020;17:145–55. https://doi.org/10.1080/17425247.2020.1713087.
  • Mishra A, Pathak A. Plasticizers: A Vital Excipient in Novel Pharmaceutical Formulations. Current Research in Pharmaceutical Sciences 2017;7:1–10. https://doi.org/10.24092/CRPS.2017.070101.
  • Otterbach A, Lamprecht A. Enhanced Skin Permeation of Estradiol by Dimethyl Sulfoxide Containing Transdermal Patches. Pharmaceutics 2021;13:320. https://doi.org/10.3390/pharmaceutics13030320.
  • Alkilani AZ, Nasereddin J, Hamed R, Nimrawi S, Hussein G, Abo-Zour H, et al. Beneath the Skin: A Review of Current Trends and Future Prospects of Transdermal Drug Delivery Systems. Pharmaceutics 2022;14:1152. https://doi.org/10.3390/pharmaceutics14061152.
  • Akrami-Hasan-Kohal M, Tayebi L, Ghorbani M. Curcumin-loaded naturally-based nanofibers as active wound dressing mats: morphology, drug release, cell proliferation, and cell adhesion studies. New J Chem 2020;44:10343–51. https://doi.org/10.1039/D0NJ01594F.
  • Mishra S, Bishnoi R, Maurya R, Jain D. BOSWELLIA SERRATA ROXB. -A BIOACTIVE HERB WITH VARIOUS PHARMACOLOGICAL ACTIVITIES. Asian Journal of Pharmaceutical and Clinical Research 2020;13:33. https://doi.org/10.22159/ajpcr.2020.v13i11.39354.
  • Chinnasamy G, Chandrasekharan S, Koh TW, Bhatnagar S. Synthesis, Characterization, Antibacterial and Wound Healing Efficacy of Silver Nanoparticles From Azadirachta indica. Front Microbiol 2021;12:611560. https://doi.org/10.3389/fmicb.2021.611560.
  • Sengsuk T, Songtipya P, Kalkornsurapranee E, Johns J, Songtipya L. Active Bio-Based Pressure-Sensitive Adhesive Based Natural Rubber for Food Antimicrobial Applications: Effect of Processing Parameters on Its Adhesion Properties. Polymers 2021;13:199. https://doi.org/10.3390/polym13020199.
  • Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–6.
  • Nematpour N, Farhadian N, Ebrahimi KS, Arkan E, Seyedi F, Khaledian S, et al. Sustained release nanofibrous composite patch for transdermal antibiotic delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020;586:124267. https://doi.org/10.1016/j.colsurfa.2019.124267.
  • Al-Hazeem NZA, Al-Hazeem NZA. Nanofibers and Electrospinning Method. IntechOpen; 2018. https://doi.org/10.5772/intechopen.72060.
  • Chinnappan BA, Krishnaswamy M, Xu H, Hoque ME. Electrospinning of Biomedical Nanofibers/Nanomembranes: Effects of Process Parameters. Polymers (Basel) 2022;14:3719. https://doi.org/10.3390/polym14183719.
  • Barhoum A, Bechelany M, Hamdy Makhlouf AS. Handbook of Nanofibers. 2019. https://doi.org/10.1007/978-3-319-53655-2.
  • Yarin A, Koombhongse S, Reneker D. Taylor Cone and Jetting from Liquid Droplets in Electrospinning of Nanofibers. Journal of Applied Physics 2001;90:4836–46. https://doi.org/10.1063/1.1408260.
  • Barhoum A, Pal K, Rahier H, Uludag H, Kim IS, Bechelany M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Applied Materials Today 2019;17:1–35. https://doi.org/10.1016/j.apmt.2019.06.015.
  • Nayl AA, Abd-Elhamid AI, Awwad NS, Abdelgawad MA, Wu J, Mo X, et al. Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers (Basel) 2022;14:1594. https://doi.org/10.3390/polym14081594.
  • Dokuchaeva AA, Timchenko TP, Karpova EV, Vladimirov SV, Soynov IA, Zhuravleva IY. Effects of Electrospinning Parameter Adjustment on the Mechanical Behavior of Poly-ε-caprolactone Vascular Scaffolds. Polymers (Basel) 2022;14:349. https://doi.org/10.3390/polym14020349.
  • Li H, Chen X, Lu W, Wang J, Xu Y, Guo Y. Application of Electrospinning in Antibacterial Field. Nanomaterials (Basel) 2021;11:1822. https://doi.org/10.3390/nano11071822.
  • Luraghi A, Peri F, Moroni L. Electrospinning for drug delivery applications: A review. J Control Release 2021;334:463–84. https://doi.org/10.1016/j.jconrel.2021.03.033.
  • Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev 2019;119:5298–415. https://doi.org/10.1021/acs.chemrev.8b00593.
  • Sun G, Sun L, Xie H, Liu J. Electrospinning of Nanofibers for Energy Applications. Nanomaterials (Basel) 2016;6:129. https://doi.org/10.3390/nano6070129.
  • Zhang C, Feng F, Zhang H. Emulsion electrospinning: Fundamentals, food applications and prospects. Trends in Food Science & Technology 2018;80:175–86. https://doi.org/10.1016/j.tifs.2018.08.005.
  • Tian Y, Zhou J, He C, He L, Li X, Sui H. The Formation, Stabilization and Separation of Oil–Water Emulsions: A Review. Processes 2022;10:738. https://doi.org/10.3390/pr10040738.
  • Wu Y-K, Wang L, Fan J, Shou W, Zhou B-M, Liu Y. Multijet Electrospinning with Auxiliary Electrode: The Influence of Solution Properties. Polymers (Basel) 2018;10:572. https://doi.org/10.3390/polym10060572.
  • Varesano A, Carletto RA, Mazzuchetti G. Experimental investigations on the multijet electrospinning process. Journal of Materials Processing Technology 2009;209:5178–85. https://doi.org/10.1016/j.jmatprotec.2009.03.003.
  • Mohammadalizadeh Z, Bahremandi-Toloue E, Karbasi S. Recent advances in modification strategies of pre- and post-electrospinning of nanofiber scaffolds in tissue engineering. Reactive and Functional Polymers 2022;172:105202. https://doi.org/10.1016/j.reactfunctpolym.2022.105202.
  • Ding B, Kimura E, Sato T, Fujita S, Shiratori S. Fabrication of blend biodegradable nanofibrous nonwoven mats via multijet electrospinning. Polymer 2004;45:1895–902. https://doi.org/10.1016/j.polymer.2004.01.026.
  • Xue J, Xie J, Liu W, Xia Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc Chem Res 2017;50:1976–87. https://doi.org/10.1021/acs.accounts.7b00218.
  • Li D, Yue G, Li S, Liu J, Li H, Gao Y, et al. Fabrication and Applications of Multi-Fluidic Electrospinning Multi-Structure Hollow and Core–Shell Nanofibers. Engineering 2022;13:116–27. https://doi.org/10.1016/j.eng.2021.02.025.
  • Yu D-G, Li J-J, Zhang M, Williams GR. High-quality Janus nanofibers prepared using three-fluid electrospinning. Chem Commun (Camb) 2017;53:4542–5. https://doi.org/10.1039/c7cc01661a.
  • Yu D-G, Yang C, Jin M, Williams GR, Zou H, Wang X, et al. Medicated Janus fibers fabricated using a Teflon-coated side-by-side spinneret. Colloids Surf B Biointerfaces 2016;138:110–6. https://doi.org/10.1016/j.colsurfb.2015.11.055.
  • Zheng X, Kang S, Wang K, Yang Y, Yu D-G, Wan F, et al. Combination of structure-performance and shape-performance relationships for better biphasic release in electrospun Janus fibers. International Journal of Pharmaceutics 2021;596:120203. https://doi.org/10.1016/j.ijpharm.2021.120203.
  • Lu Y, Huang J, Yu G, Cardenas R, Wei S, Wujcik EK, et al. Coaxial electrospun fibers: applications in drug delivery and tissue engineering. WIREs Nanomed Nanobiotechnol 2016;8:654–77. https://doi.org/10.1002/wnan.1391.
  • Pant B, Park M, Park S-J. Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review. Pharmaceutics 2019;11:305. https://doi.org/10.3390/pharmaceutics11070305.
  • Rathore P, Schiffman JD. Beyond the Single-Nozzle: Coaxial Electrospinning Enables Innovative Nanofiber Chemistries, Geometries, and Applications. ACS Appl Mater Interfaces 2021;13:48–66. https://doi.org/10.1021/acsami.0c17706.
  • Liu Y, Chen X, Liu Y, Gao Y, Liu P. Electrospun Coaxial Fibers to Optimize the Release of Poorly Water-Soluble Drug. Polymers 2022;14:469. https://doi.org/10.3390/polym14030469.
  • Baykara T, Taylan G. Coaxial electrospinning of PVA/Nigella seed oil nanofibers: Processing and morphological characterization. Materials Science and Engineering: B 2021;265:115012. https://doi.org/10.1016/j.mseb.2020.115012.
  • Liu W, Ni C, Chase D, Rabolt J. Preparation of Multilayer Biodegradable Nanofibers by Triaxial Electrospinning. ACS Macro Letters 2013;2:466–8. https://doi.org/10.1021/mz4000688.
  • Liu X, Yang Y, Yu D-G, Zhu M-J, Zhao M, Williams GR. Tunable zero-order drug delivery systems created by modified triaxial electrospinning. Chemical Engineering Journal 2019;356:886–94. https://doi.org/10.1016/j.cej.2018.09.096.
  • Yu D, Wang M, Xiaoyan L, Liu X, Zhu L-M, Bligh S. Multifluid electrospinning for the generation of complex nanostructures. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2019;12:e1601. https://doi.org/10.1002/wnan.1601.
  • Zulkifli MZA, Nordin D, Shaari N, Kamarudin SK. Overview of Electrospinning for Tissue Engineering Applications. Polymers 2023;15:2418. https://doi.org/10.3390/polym15112418.
  • Zhang X, Chi C, Chen J, Zhang X, Gong M, Wang X, et al. Electrospun quad-axial nanofibers for controlled and sustained drug delivery. Materials & Design 2021;206:109732. https://doi.org/10.1016/j.matdes.2021.109732.
  • Gonçalves S. Use of enzymes in cosmetics: proposed enzymatic peel procedure 2021;1:29–35.
  • Bié J, Sepodes B, Fernandes PCB, Ribeiro MHL. Enzyme Immobilization and Co-Immobilization: Main Framework, Advances and Some Applications. Processes 2022;10:494. https://doi.org/10.3390/pr10030494.
  • Basso A, Serban S. Overview of Immobilized Enzymes' Applications in Pharmaceutical, Chemical, and Food Industry. Methods Mol Biol 2020;2100:27–63. https://doi.org/10.1007/978-1-0716-0215-7_2.
  • White-Chu EF, Reddy M. Dry skin in the elderly: complexities of a common problem. Clin Dermatol 2011;29:37–42. https://doi.org/10.1016/j.clindermatol.2010.07.005.
  • Clark EW. A brief history of lanolin. Pharm Hist (Lond) 1980;10:5–6.
  • Ertas IF, Uzun M, Altan E, Kabir MH, Gurboga M, Ozakpinar OB, et al. Investigation of silk fibroin-lanolin blended nanofibrous structures. Materials Letters 2023;330:133263. https://doi.org/10.1016/j.matlet.2022.133263.
  • Thau P. Glycerin (glycerol): Current insights into the functional properties of a classic cosmetic raw material. J Cosmet Sci 2002;53:229–36.
  • Fluhr JW, Gloor M, Lehmann L, Lazzerini S, Distante F, Berardesca E. Glycerol accelerates recovery of barrier function in vivo. Acta Derm Venereol 1999;79:418–21. https://doi.org/10.1080/000155599750009825.
  • Gonçalves MM, Lobsinger KL, Carneiro J, Picheth GF, Pires C, Saul CK, et al. Morphological study of electrospun chitosan/poly(vinyl alcohol)/glycerol nanofibres for skin care applications. International Journal of Biological Macromolecules 2022;194:172–8. https://doi.org/10.1016/j.ijbiomac.2021.11.195.
  • Movahedi M, Asefnejad A, Rafienia M, Khorasani MT. Potential of novel electrospun core-shell structured polyurethane/starch (hyaluronic acid) nanofibers for skin tissue engineering: In vitro and in vivo evaluation. International Journal of Biological Macromolecules 2020;146:627–37. https://doi.org/10.1016/j.ijbiomac.2019.11.233.
  • Fan L, Cai Z, Zhang K, Han F, Li J, He C, et al. Green electrospun pantothenic acid/silk fibroin composite nanofibers: fabrication, characterization and biological activity. Colloids Surf B Biointerfaces 2014;117:14–20. https://doi.org/10.1016/j.colsurfb.2013.12.030.
  • Gehring W, Gloor M. Effect of topically applied dexpanthenol on epidermal barrier function and stratum corneum hydration. Results of a human in vivo study. Arzneimittelforschung 2000;50:659–63. https://doi.org/10.1055/s-0031-1300268.
  • Biro K, Thaçi D, Ochsendorf FR, Kaufmann R, Boehncke W-H. Efficacy of dexpanthenol in skin protection against irritation: a double-blind, placebo-controlled study. Contact Dermatitis 2003;49:80–4. https://doi.org/10.1111/j.0105-1873.2003.00184.x.
  • Kazsoki A, Palcsó B, Alpár A, Snoeck R, Andrei G, Zelkó R. Formulation of acyclovir (core)-dexpanthenol (sheath) nanofibrous patches for the treatment of herpes labialis. Int J Pharm 2022;611:121354. https://doi.org/10.1016/j.ijpharm.2021.121354.
  • Jin YH, Lee SJ, Chung MH, Park JH, Park YI, Cho TH, et al. Aloesin and arbutin inhibit tyrosinase activity in a synergistic manner via a different action mechanism. Arch Pharm Res 1999;22:232–6. https://doi.org/10.1007/BF02976355.
  • Wahedi HM, Jeong M, Chae JK, Do SG, Yoon H, Kim SY. Aloesin from Aloe vera accelerates skin wound healing by modulating MAPK/Rho and Smad signaling pathways in vitro and in vivo. Phytomedicine 2017;28:19–26. https://doi.org/10.1016/j.phymed.2017.02.005.
  • Zhu W, Gao J. The use of botanical extracts as topical skin-lightening agents for the improvement of skin pigmentation disorders. J Investig Dermatol Symp Proc 2008;13:20–4. https://doi.org/10.1038/jidsymp.2008.8.
  • Gupta S, Dutta P, Acharya V, Prasad P, Roy A, Bit A. Accelerating skin barrier repair using novel bioactive magnesium-doped nanofibers of non-mulberry silk fibroin during wound healing. Journal of Bioactive and Compatible Polymers 2022;37:38–52. https://doi.org/10.1177/08839115211061737.
  • Liu Y, Qin Y, Bai R, Zhang X, Yuan L, Liu J. Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. International Journal of Biological Macromolecules 2019;134:993–1001. https://doi.org/10.1016/j.ijbiomac.2019.05.175.
  • Hakozaki T, Minwalla L, Zhuang J, Chhoa M, Matsubara A, Miyamoto K, et al. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br J Dermatol 2002;147:20–31. https://doi.org/10.1046/j.1365-2133.2002.04834.x.
  • Nada A, Hassabo A, Mohamed A, Zaghloul S. Encapsulation of Nicotinamide into Cellulose Based Electrospun Fibers. Journal of Applied Pharmaceutical Science 2016;6:013–21. https://doi.org/10.7324/JAPS.2016.60803.
  • Katiyar SK, Ahmad N, Mukhtar H. Green tea and skin. Arch Dermatol 2000;136:989–94. https://doi.org/10.1001/archderm.136.8.989.
  • Sadri .Minoo, Arab-Sorkhi S, Vatani H, Bagheri Pebdeni A. New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method. Fibers and Polymers 2015;16:1742–50. https://doi.org/10.1007/s12221-015-5297-7.
  • De Spirt S, Stahl W, Tronnier H, Sies H, Bejot M, Maurette J-M, et al. Intervention with flaxseed and borage oil supplements modulates skin condition in women. Br J Nutr 2009;101:440–5. https://doi.org/10.1017/S0007114508020321.
  • Hadad S, Goli S. Improving Oxidative Stability of Flaxseed Oil by Encapsulation in Electrospun Flaxseed Mucilage Nanofiber. Food and Bioprocess Technology 2019;12. https://doi.org/10.1007/s11947-019-02259-1.
  • Hadad S, Goli S. Fabrication and characterization of electrospun nanofibers using flaxseed ( Linum usitatissimum ) mucilage. International Journal of Biological Macromolecules 2018;114. https://doi.org/10.1016/j.ijbiomac.2018.03.154.
  • Staniforth V, Chiu L-T, Yang N-S. Caffeic acid suppresses UVB radiation-induced expression of interleukin-10 and activation of mitogen-activated protein kinases in mouse. Carcinogenesis 2006;27:1803–11. https://doi.org/10.1093/carcin/bgl006.
  • Saija A, Tomaino A, Trombetta D, De Pasquale A, Uccella N, Barbuzzi T, et al. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int J Pharm 2000;199:39–47. https://doi.org/10.1016/s0378-5173(00)00358-6.
  • Vilchez A, Acevedo F, Cea M, Seeger M, Navia R. Applications of Electrospun Nanofibers with Antioxidant Properties: A Review. Nanomaterials 2020;10:175. https://doi.org/10.3390/nano10010175.
  • Kaya S, Yilmaz DE, Akmayan I, Egri O, Arasoglu T, Derman S. Caffeic Acid Phenethyl Ester Loaded Electrospun Nanofibers for Wound Dressing Application. J Pharm Sci 2022;111:734–42. https://doi.org/10.1016/j.xphs.2021.09.041.
  • Wang Q-J, Gao X, Gong H, Lin X-R, Saint-Leger D, Senee J. Chemical stability and degradation mechanisms of ferulic acid (FA) within various cosmetic formulations. J Cosmet Sci 2011;62:483–503.
  • Vashisth P, Kumar N, Sharma M, Pruthi V. Biomedical applications of ferulic acid encapsulated electrospun nanofibers. Biotechnol Rep (Amst) 2015;8:36–44. https://doi.org/10.1016/j.btre.2015.08.008.
  • Charurin P, Ames JM, del Castillo MD. Antioxidant activity of coffee model systems. J Agric Food Chem 2002;50:3751–6. https://doi.org/10.1021/jf011703i.
  • Sheng X, Fan L, He C, Zhang K, Mo X, Wang H. Vitamin E-loaded silk fibroin nanofibrous mats fabricated by green process for skin care application. Int J Biol Macromol 2013;56:49–56. https://doi.org/10.1016/j.ijbiomac.2013.01.029.
  • Taepaiboon P, Rungsardthong U, Supaphol P. Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur J Pharm Biopharm 2007;67:387–97. https://doi.org/10.1016/j.ejpb.2007.03.018.
  • Israili ZH. Antimicrobial properties of honey. Am J Ther 2014;21:304–23. https://doi.org/10.1097/MJT.0b013e318293b09b.
  • Ediriweera ERHSS, Premarathna NYS. Medicinal and cosmetic uses of Bee's Honey - A review. Ayu 2012;33:178–82. https://doi.org/10.4103/0974-8520.105233.
  • Pakolpakçıl A, Draczynski Z. Green Approach to Develop Bee Pollen-Loaded Alginate Based Nanofibrous Mat. Materials 2021;14:2775. https://doi.org/10.3390/ma14112775.
  • Ionescu OM, Mignon A, Iacob AT, Simionescu N, Confederat LG, Tuchilus C, et al. New Hyaluronic Acid/Polyethylene Oxide-Based Electrospun Nanofibers: Design, Characterization and In Vitro Biological Evaluation. Polymers (Basel) 2021;13:1291. https://doi.org/10.3390/polym13081291.
  • Pugazhenthi K, Kapoor M, Clarkson AN, Hall I, Appleton I. Melatonin accelerates the process of wound repair in full-thickness incisional wounds. J Pineal Res 2008;44:387–96. https://doi.org/10.1111/j.1600-079X.2007.00541.x.
  • Morganti P. Melatonin and immunostimulating substance-based compositions. EP1991222B1, 2016.
  • Mirmajidi T, Chogan F, Rezayan AH, Sharifi AM. In vitro and in vivo evaluation of a nanofiber wound dressing loaded with melatonin. Int J Pharm 2021;596:120213. https://doi.org/10.1016/j.ijpharm.2021.120213.
  • Rahman S, Carter P, Bhattarai N. Aloe Vera for Tissue Engineering Applications. JFB 2017;8:6. https://doi.org/10.3390/jfb8010006.
  • Barbosa R, Villarreal A, Rodriguez C, De Leon H, Gilkerson R, Lozano K. Aloe Vera extract-based composite nanofibers for wound dressing applications. Mater Sci Eng C Mater Biol Appl 2021;124:112061. https://doi.org/10.1016/j.msec.2021.112061.
Toplam 185 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyomateryaller
Bölüm Derlemeler
Yazarlar

Elçin Tören 0000-0002-1491-5389

Adnan Ahmed Mazari 0000-0002-2979-9878

Yayımlanma Tarihi
Gönderilme Tarihi 16 Mayıs 2024
Kabul Tarihi 29 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 2

Kaynak Göster

APA Tören, E., & Mazari, A. A. (t.y.). Nano Transdermal Delivery Systems of Herbal Extracts for Dermatological Therapeutics and Skin Care. Open Journal of Nano, 9(2), 77-105. https://doi.org/10.56171/ojn.1485463
AMA Tören E, Mazari AA. Nano Transdermal Delivery Systems of Herbal Extracts for Dermatological Therapeutics and Skin Care. OJN. 9(2):77-105. doi:10.56171/ojn.1485463
Chicago Tören, Elçin, ve Adnan Ahmed Mazari. “Nano Transdermal Delivery Systems of Herbal Extracts for Dermatological Therapeutics and Skin Care”. Open Journal of Nano 9, sy. 2 t.y.: 77-105. https://doi.org/10.56171/ojn.1485463.
EndNote Tören E, Mazari AA Nano Transdermal Delivery Systems of Herbal Extracts for Dermatological Therapeutics and Skin Care. Open Journal of Nano 9 2 77–105.
IEEE E. Tören ve A. A. Mazari, “Nano Transdermal Delivery Systems of Herbal Extracts for Dermatological Therapeutics and Skin Care”, OJN, c. 9, sy. 2, ss. 77–105, doi: 10.56171/ojn.1485463.
ISNAD Tören, Elçin - Mazari, Adnan Ahmed. “Nano Transdermal Delivery Systems of Herbal Extracts for Dermatological Therapeutics and Skin Care”. Open Journal of Nano 9/2 (t.y.), 77-105. https://doi.org/10.56171/ojn.1485463.
JAMA Tören E, Mazari AA. Nano Transdermal Delivery Systems of Herbal Extracts for Dermatological Therapeutics and Skin Care. OJN.;9:77–105.
MLA Tören, Elçin ve Adnan Ahmed Mazari. “Nano Transdermal Delivery Systems of Herbal Extracts for Dermatological Therapeutics and Skin Care”. Open Journal of Nano, c. 9, sy. 2, ss. 77-105, doi:10.56171/ojn.1485463.
Vancouver Tören E, Mazari AA. Nano Transdermal Delivery Systems of Herbal Extracts for Dermatological Therapeutics and Skin Care. OJN. 9(2):77-105.

Open Journal of Nano(OJN), dergisi molekülerden mikro boyuttaki yapılara kadar değişen fiziksel, kimyasal ve biyolojik olaylar ve süreçlerle ilgili (ancak bunlarla sınırlı olmayan) bilgilerle ilgilenir.
Cc_by-nc_icon.svgThe Open Journal of Nano dergisinde yayınlanan tüm yayınlar Atıf-GayriTicari 4.0 Uluslararası (CC BY-NC 4.0) lisansı altında lisanlanmıştır.