Araştırma Makalesi
BibTex RIS Kaynak Göster

M, ρ, and M/ρ Monoidleri için Sonlu Tam Yeniden Yazma Sistemleri

Yıl 2023, Cilt: 6 Sayı: 1, 720 - 725, 10.03.2023
https://doi.org/10.47495/okufbed.1093331

Öz

𝑀 bir monoid ve 𝜌, 𝑀 üzerinde kongrüans olacak biçimde bir denklik bağıntısı olsun. Böylece, 𝜌, 𝑀×𝑀 monoidlerinin direkt çarpımının bir alt monoidi ve 𝑀/𝜌={𝑥𝜌:𝑥∈𝑀} kümesi (𝑥𝜌)(𝑦𝜌)=(𝑥𝑦)𝜌 işlemi ile bir monoid olur. Öncelikle, bir giriş lemması ifade ve ispat edilerek konu ile ilgili bir örnek verilmektedir. Daha sonra, eğer 𝜌 bir sonlu tam yeniden yazma sistemi ile takdim edilebilir ise, 𝑀’nin de bir sonlu tam yeniden yazma sistemi ile takdim edilebilir olduğu gösterilmektedir. Ana sonucun son kısmında, eğer 𝜌 bir sonlu tam yeniden yazma sistemi ile takdim edilebilir ise, 𝑀/𝜌 monoidinin de bir sonlu tam yeniden yazma sistemi ile takdim edilebilir olduğu gösterilmektedir.

Kaynakça

  • Ayık G., Ayık H., Ünlü Y. Presentations for S and S/ρ from a given presentation ρ, Semigroup Forum, 2005; 70: 146-149.
  • Book R.V., Otto F. String-Rewriting Systems, Springer-Verlag, New York, 1993.
  • Cetinalp, E. K., Karpuz, E. G. Crossed product of infinite groups and complete rewriting systems, Turkish Journal of Mathematics, 2021; 45(1): 410-422.
  • Dehn M. Tiber unendliche diskontinuierliche Gruppen, Mathematische Annalen, 1911; 71: 116-144.
  • Gray R., Malheiro A., Finite complete rewriting systems for regular semigroups, Theoretical Computer Science, 2011; 412: 654-661.
  • Howie J. M. Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
  • Kuyucu F. Relations between Ranks of Certain Semigroups, Selçuk J. Appl. Math., 2011; 12(1): 123-126.
  • Özer, B., Yüksek, A. Finite Complete Rewriting Systems For Matrix Semigroup Presentations, International Journal of Algebra, 2016; 10: 497-511.
  • Pride S. J. Subgroups of Finite Index in Groups with Finite Complete Rewriting Systems, Proceedings of the Edinburgh Mathematical Society, 2000; 43(1): 177-183.
  • Sims C.C. Computation with Finitely Presentations Groups, Cambridge University Press, Cambridge, 1994.
  • Squier C., Otto F., Kobayashi Y. A finiteness condition for rewriting systems, Theoretical Computer Science, 1994; 131: 271-294.
  • Wang J. Finite Derivation Type for Semigroups and Congruences, Semigroup Forum, 2007; 75: 388-392.
  • Wang J. Finite complete rewriting systems and finite derivation type for small extensions of monoids, Journal of Algebra, 1998; 204: 493-503.
  • Wong K.B., Wong P.C. On finite complete rewriting systems and large subsemigroups, Journal of Algebra, 2010; 345: 242-256.

Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ

Yıl 2023, Cilt: 6 Sayı: 1, 720 - 725, 10.03.2023
https://doi.org/10.47495/okufbed.1093331

Öz

Let 𝑀 be a monoid and 𝜌 be an equivalence relation on 𝑀 such that 𝜌 is a congruence. So, 𝜌 is a submonoid of the direct product of monoids 𝑀×𝑀, and 𝑀/𝜌={𝑥𝜌:𝑥∈𝑀} is a monoid with the operation (𝑥𝜌)(𝑦𝜌)=(𝑥𝑦)𝜌. First, an introductory lemma is proposed, proved and a relevant example is given. Then, it is shown that if 𝜌 can be presented by a finite complete rewriting system, then so can 𝑀. As the final part of the main result, it is proved that if 𝜌 can be presented by a finite complete rewriting system, then so can 𝑀/𝜌.

Kaynakça

  • Ayık G., Ayık H., Ünlü Y. Presentations for S and S/ρ from a given presentation ρ, Semigroup Forum, 2005; 70: 146-149.
  • Book R.V., Otto F. String-Rewriting Systems, Springer-Verlag, New York, 1993.
  • Cetinalp, E. K., Karpuz, E. G. Crossed product of infinite groups and complete rewriting systems, Turkish Journal of Mathematics, 2021; 45(1): 410-422.
  • Dehn M. Tiber unendliche diskontinuierliche Gruppen, Mathematische Annalen, 1911; 71: 116-144.
  • Gray R., Malheiro A., Finite complete rewriting systems for regular semigroups, Theoretical Computer Science, 2011; 412: 654-661.
  • Howie J. M. Fundamentals of Semigroup Theory, Clarendon Press, Oxford, 1995.
  • Kuyucu F. Relations between Ranks of Certain Semigroups, Selçuk J. Appl. Math., 2011; 12(1): 123-126.
  • Özer, B., Yüksek, A. Finite Complete Rewriting Systems For Matrix Semigroup Presentations, International Journal of Algebra, 2016; 10: 497-511.
  • Pride S. J. Subgroups of Finite Index in Groups with Finite Complete Rewriting Systems, Proceedings of the Edinburgh Mathematical Society, 2000; 43(1): 177-183.
  • Sims C.C. Computation with Finitely Presentations Groups, Cambridge University Press, Cambridge, 1994.
  • Squier C., Otto F., Kobayashi Y. A finiteness condition for rewriting systems, Theoretical Computer Science, 1994; 131: 271-294.
  • Wang J. Finite Derivation Type for Semigroups and Congruences, Semigroup Forum, 2007; 75: 388-392.
  • Wang J. Finite complete rewriting systems and finite derivation type for small extensions of monoids, Journal of Algebra, 1998; 204: 493-503.
  • Wong K.B., Wong P.C. On finite complete rewriting systems and large subsemigroups, Journal of Algebra, 2010; 345: 242-256.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Aykut Emniyet 0000-0003-4993-4229

Basri Çalışkan

Yayımlanma Tarihi 10 Mart 2023
Gönderilme Tarihi 25 Mart 2022
Kabul Tarihi 7 Ekim 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 1

Kaynak Göster

APA Emniyet, A., & Çalışkan, B. (2023). Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 6(1), 720-725. https://doi.org/10.47495/okufbed.1093331
AMA Emniyet A, Çalışkan B. Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). Mart 2023;6(1):720-725. doi:10.47495/okufbed.1093331
Chicago Emniyet, Aykut, ve Basri Çalışkan. “Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6, sy. 1 (Mart 2023): 720-25. https://doi.org/10.47495/okufbed.1093331.
EndNote Emniyet A, Çalışkan B (01 Mart 2023) Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6 1 720–725.
IEEE A. Emniyet ve B. Çalışkan, “Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ”, OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci), c. 6, sy. 1, ss. 720–725, 2023, doi: 10.47495/okufbed.1093331.
ISNAD Emniyet, Aykut - Çalışkan, Basri. “Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 6/1 (Mart 2023), 720-725. https://doi.org/10.47495/okufbed.1093331.
JAMA Emniyet A, Çalışkan B. Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2023;6:720–725.
MLA Emniyet, Aykut ve Basri Çalışkan. “Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 6, sy. 1, 2023, ss. 720-5, doi:10.47495/okufbed.1093331.
Vancouver Emniyet A, Çalışkan B. Finite Complete Rewriting Systems for the Monoids M, ρ, and M/ρ. OKÜ Fen Bil. Ens. Dergisi ((OKU Journal of Nat. & App. Sci). 2023;6(1):720-5.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.