Fotoelektrokimyasal Yolla Hidrojen Gazı Üretiminde Kullanılan BiVO4/Cr2O3 Fotoelektrodunun RuO2 İle Katalitik Etkinliğinin Artırılması
Yıl 2023,
Cilt: 6 Sayı: 3, 2183 - 2200, 04.12.2023
Fatih Tezcan
,
Meltem Kahya Düdükcü
Öz
Bu çalışmada, suyun ayrıştırılmasında fotokatalitik özelliğe sahip BiVO4/Cr2O3 n-p ikili fotoelektrodun üzerine oksijen oluşum reaksiyonunda (OER) katalitik özellik gösteren RuO2, dönüşümlü voltametri (DV) tekniği kullanılarak farklı döngülerde (2, 5, 7 ve 10) katkılanmıştır. Farklı döngülerde sentezlenen BiVO4/Cr2O3/RuO2 elektrotlarının karakterizasyonu taramalı elektron mikroskobu (SEM), X-ışını kırınımı (XRD) ve UV-vis spektrometresiyle gerçekleştirilmiştir. Suyun fotoelektrokimyasal ayrıştırılmasıyla hidrojen gazı üretiminde fotokatalitik performanslar doğrusal tarama voltametrisi (LSV), elektrokimyasal impedans spektroskopisi (EIS) ve kronoamperometrik ölçümlerle gerçekleştirilmiştir. EIS ölçümü, BiVO4/Cr2O3 (413,1 cm2) üzerine katkılanan RuO2 ile polarizasyon direncinin azaldığını ve BiVO4/Cr2O3/RuO2 elektrotları arasında en düşük polarizasyon direncinin 7 döngü sonunda elde edilen elektrotta ait olduğunu Rp (102,8 ohm cm2) göstermektedir. LSV ve kronoamperometrik ölçümleri, RuO2 sentezindeki DV döngüsünün artmasıyla fotoelektrodun OER katalitik aktivitesinin artığını ancak 10 döngüde BiVO4/Cr2O3 n-p ikili elektrodun katalitik performansın azaldığını göstermektedir.
Destekleyen Kurum
Tübitak
Proje Numarası
2218-Yurt İçi Doktora Sonrası Araştırma Burs Programı,
Teşekkür
Bu çalışmanın yapılmasında destek veren TÜBİTAK 2218-Yurt İçi Doktora Sonrası Araştırma Burs Programı’ na, Mersin Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü’ ne, Çukurova Üniversitesi Fen-Edebiyat Fakültesi Kimya Bölümü Fizikokimya Araştırma Lab.’ına, XRD analiz ve SEM görüntüleri için Merkez Lab.’a, deneysel çalışmalarda değerli katkıları için Prof. Dr. Gülfeza KARDAŞ’a teşekkür ederim.
Kaynakça
- Ahmed M, Dincer I. A review on photoelectrochemical hydrogen production systems: Challenges and future directions. Int J Hydrogen Energy 2019; 44(5):2474–2507.
- Andrade L, Cruz R, Ribeiro HA, Mendes A. Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting. Int J Hydrogen Energy 2010; 35(17):15-25
- Baral B, Reddy KH, Parida KM. Construction of M-BiVO4/T-BiVO4 isotype heterojunction for enhanced photocatalytic degradation of Norfloxacine and Oxygen evolution reaction. J Colloid Interface Sci. 2019; 554:
- Baran Aydın E, Ateş S, Sığırcık G. CuO-TiO2 nanostructures prepared by chemical and electrochemical methods as photo electrode for hydrogen production. Int J Hydrogen Energy 2022; 47(10):
- Baues S, Vocke H, Harms L, Rücker KK, Wark M, Wittstock G. Combinatorial Screening of Cu-W Oxide-Based Photoanodes for Photoelectrochemical Water Splitting. ACS Appl Mater Interfaces. 2022; 14(5):
- Bayat F, Sheibani S. Enhancement of photocatalytic activity of CuO-Cu2O heterostructures through the controlled content of Cu2O. Mater Res Bull. 2022; 145:
- Bloesser A, Timm J, Kurz H, Milius W, Hayama S. A Novel Synthesis Yielding Macroporous CaFe2O4 Sponges for Solar Energy Conversion. Solar RRL. 2020; 4(8):
- Chen YS, Lin LY. Novel synthesis of highly ordered BiVO4 nanorod array for photoelectrochemical water oxidation using a facile solution process. J Power Sources 2019; 436:
- da Silva Veras T, Mozer TS, da Costa Rubim Messeder dos Santos D, da Silva César A. Hydrogen: Trends, production and characterization of the main process worldwide. Int J Hydrogen Energy. 2017; 42(4):2018–33
- Dong C, Zhao R, Yao L, Ran Y, Zhang X, Wang Y. A review on WO3 based gas sensors: Morphology control and enhanced sensing properties 2020;
- Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238(5358):
- Gómez-Solís C, Ballesteros JC, Torres-Martínez LM, Juárez-Ramírez I. RuO2-NaTaO3 heterostructure for its application in photoelectrochemical water splitting under simulated sunlight illumination. Fuel 2016; 166:
- Hegner FS, Herraiz-Cardona I, Cardenas-Morcoso D, López N, Galán-Mascarós JR, Gimenez S. Cobalt Hexacyanoferrate on BiVO4 Photoanodes for Robust Water Splitting. ACS Appl Mater Interfaces 2017; 9(43):
- Hong D, Yim S. RuO2 Thin Films Electrodeposited on Polystyrene Nanosphere Arrays: Growth Mechanism and Application to Supercapacitor Electrodes. Langmuir 2018; 34(14):
- Ikram A, Zulfequar M, Satsangi VR. Role and prospects of green quantum dots in photoelectrochemical hydrogen generation: A review. Int J Hydrogen Energy 2022; 47(22):11472–91
- Ismail AA, Robben L, Bahnemann DW. Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. ChemPhysChem. 2011; 12(5):
- Jeong D, Jo W, Jeong J, Kim T, Han S, ve ark., Characterization of Cu2O/CuO heterostructure photocathode by tailoring CuO thickness for photoelectrochemical water splitting. RSC Adv. 2022; 12(5):
- Jin J, Fu M, Wang L, Ma T, Li X, ve ark., Water-splitting mechanism analysis of Sr/Ca doped LaFeO3 towards commercial efficiency of solar thermochemical H2 production. Int J Hydrogen Energy 2021; 46(2):
- Kalanoor BS, Seo H, Kalanur SS. Multiple ion doping in BiVO4 as an effective strategy of enhancing photoelectrochemical water splitting: A review 2021;
Kavan L. Electrochemistry and dye-sensitized solar cells 2017;
- Kim H, Bae S, Jeon D, Ryu J. Fully solution-processable Cu2O-BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chemistry 2018; 20(16):
- Kim MW, Samuel E, Kim K, Yoon H, Joshi B, ve ark., Tuning the morphology of electrosprayed BiVO4 from nanopillars to nanoferns via pH control for solar water splitting. J Alloys Compd. 2017; 769:
Kyesmen PI, Nombona N, Diale M. 2021. Heterojunction of nanostructured α-Fe2O3/CuO for enhancement of photoelectrochemical water splitting. J Alloys Compd. 2018; 863:
- le Minh Tri N, Trung DQ, van Thuan D, Dieu Cam NT, al Tahtamouni T. The advanced photocatalytic performance of V doped CuWO4 for water splitting to produce hydrogen. Int J Hydrogen Energy 2020; 45(36):
Lee SH, Liu P, Cheong HM, Edwin Trecy C, Deb SK. Electrochromism of amorphous ruthenium oxide thin films. Solid State Ion. 2003; 165(1–4):
Li Y, Zhu S, Liang Y, Li Z, Wu S, ve ark., Synthesis of α-Fe2O3/g-C3N4 photocatalyst for high-efficiency water splitting under full light. Mater Des. 2020; 196:
- Mahalingam S, Abdullah H. Electron transport study of indium oxide as photoanode in DSSCs: A review 2016;
- Mao L, Mohan S, Gupta SK, Mao Y. Multifunctional delafossite CuFeO2 as water splitting catalyst and rhodamine B sensor. Mater Chem Phys. 2022; 278:
- Murillo-Sierra JC, Hernández-Ramírez A, Hinojosa-Reyes L, Guzmán-Mar JL. A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications 2021;
- Osada M, Nishio K, Lee K, Colletta M, Goodge B.H. Highly Efficient Surface Charge Transfer in Fe2TiO5Epitaxial Thin Film Photoanodes. ACS Appl Energy Mater. 2021; 4(3):
- Saraswat SK, Rodene DD, Gupta RB. Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable and Sustainable Energy Reviews. 2018; 89:228–48
- Sarkar S, Das NS, Chattopadhyay KK. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering. Solid State Sci. 2014; 33:
- Shi YJ, Pei J, Zhang J, Niu JL, Zhang H. Enhanced corrosion resistance and cytocompatibility of biodegradable Mg alloys by introduction of Mg(OH)2 particles into poly (L-lactic acid) coating. Sci Rep. 2017; 7:
- Sone BT, Manikandan E, Gurib-Fakim A, Maaza M. Single-phase α-Cr2O3nanoparticles’ green synthesis using Callistemon viminalis’ red flower extract. Green Chem Lett Rev. 2016; 9(2):
- Sugawara Y, Kamata K, Ishikawa A, Tateyama Y, Yamaguchi T. Efficient Oxygen Evolution Electrocatalysis on CaFe2O4and Its Reaction Mechanism. ACS Appl Energy Mater. 2021; 4(4):
- Thomas CES. Conclusions: “stopping climate change: The case for coal and hydrogen.” In Lecture Notes in Energy, Vol. 2017; 35
- Tsuji E, Imanishi A, Fukui KI, Nakato Y. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim Acta. 2011; 56(5):
- Wang J, Lu Z, Ling Y, Wang R, Li Y. Hydrogen permeation properties of CrxCy@Cr2O3/Al2O3 composite coating derived from selective oxidation of a Cr–C alloy and atomic layer deposition. Int J Hydrogen Energy 2018; 43(45):
- Wang Y, Zhang J, Balogun M-S, Tong Y, Huang Y. Oxygen vacancy–based metal oxides photoanodes in photoelectrochemical water splitting. Materials Today Sustainability 2022; 18:100118
- Xie Y, Yao C. Electrochemical performance of RuO2-TiO2 nanotube hybrid electrode material. Mater Res Express. 2019; 6(12):
- Xie Y, Yao C. Electrochemical performance of RuO2-TiO2 nanotube hybrid electrode material. Mater Res Express. 2019; 6(12):
- Xiong K, Li L, Deng Z, Xia M, Chen S, ve ark., RuO2 loaded into porous Ni as a synergistic catalyst for hydrogen production. RSC Adv. 2014; 4(39):
- Yu Y, Yin X, Kvit A, Wang X. Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. Nano Lett. 2014; 14(5):2528–35
Increasing The Catalytic Efficiency with RuO2 of BiVO4/Cr2O3 Photoelectrode Used in The Photoelectrochemical Production of Hydrogen Gas
Yıl 2023,
Cilt: 6 Sayı: 3, 2183 - 2200, 04.12.2023
Fatih Tezcan
,
Meltem Kahya Düdükcü
Öz
In this study, RuO2, which shows catalytic property in oxygen formation reaction (OER) on BiVO4/Cr2O3 n-p binary photoelectrode which has photocatalytic property in water separation, was doped in different cycles (2, 5, 7 and 10) by using cycling voltammetry (CV) technique. The characterization of BiVO4/Cr2O3/RuO2 electrodes synthesized in different cycles was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and UV-vis spectrometry. Photocatalytic performances in hydrogen gas production by photoelectrochemical water splitting were conducted by linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and chronoamperometric measurements. The EIS measurement shows that the polarization resistance is reduced by RuO2 doped on BiVO4/Cr2O3 (413,1 ohmcm2) and that the lowest polarization resistance among the BiVO4/Cr2O3/RuO2 electrodes belongs to the electrode obtained at the end of 7 cycles. LSV and chronoamperometric measurements show that the OER catalytic activity of the photoelectrode increases with the increase of the clycles CV in the RuO2 synthesis, but the catalytic performance of the BiVO4/Cr2O3 n-p binary electrode decreases at the 10 cycles.
Proje Numarası
2218-Yurt İçi Doktora Sonrası Araştırma Burs Programı,
Kaynakça
- Ahmed M, Dincer I. A review on photoelectrochemical hydrogen production systems: Challenges and future directions. Int J Hydrogen Energy 2019; 44(5):2474–2507.
- Andrade L, Cruz R, Ribeiro HA, Mendes A. Impedance characterization of dye-sensitized solar cells in a tandem arrangement for hydrogen production by water splitting. Int J Hydrogen Energy 2010; 35(17):15-25
- Baral B, Reddy KH, Parida KM. Construction of M-BiVO4/T-BiVO4 isotype heterojunction for enhanced photocatalytic degradation of Norfloxacine and Oxygen evolution reaction. J Colloid Interface Sci. 2019; 554:
- Baran Aydın E, Ateş S, Sığırcık G. CuO-TiO2 nanostructures prepared by chemical and electrochemical methods as photo electrode for hydrogen production. Int J Hydrogen Energy 2022; 47(10):
- Baues S, Vocke H, Harms L, Rücker KK, Wark M, Wittstock G. Combinatorial Screening of Cu-W Oxide-Based Photoanodes for Photoelectrochemical Water Splitting. ACS Appl Mater Interfaces. 2022; 14(5):
- Bayat F, Sheibani S. Enhancement of photocatalytic activity of CuO-Cu2O heterostructures through the controlled content of Cu2O. Mater Res Bull. 2022; 145:
- Bloesser A, Timm J, Kurz H, Milius W, Hayama S. A Novel Synthesis Yielding Macroporous CaFe2O4 Sponges for Solar Energy Conversion. Solar RRL. 2020; 4(8):
- Chen YS, Lin LY. Novel synthesis of highly ordered BiVO4 nanorod array for photoelectrochemical water oxidation using a facile solution process. J Power Sources 2019; 436:
- da Silva Veras T, Mozer TS, da Costa Rubim Messeder dos Santos D, da Silva César A. Hydrogen: Trends, production and characterization of the main process worldwide. Int J Hydrogen Energy. 2017; 42(4):2018–33
- Dong C, Zhao R, Yao L, Ran Y, Zhang X, Wang Y. A review on WO3 based gas sensors: Morphology control and enhanced sensing properties 2020;
- Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972; 238(5358):
- Gómez-Solís C, Ballesteros JC, Torres-Martínez LM, Juárez-Ramírez I. RuO2-NaTaO3 heterostructure for its application in photoelectrochemical water splitting under simulated sunlight illumination. Fuel 2016; 166:
- Hegner FS, Herraiz-Cardona I, Cardenas-Morcoso D, López N, Galán-Mascarós JR, Gimenez S. Cobalt Hexacyanoferrate on BiVO4 Photoanodes for Robust Water Splitting. ACS Appl Mater Interfaces 2017; 9(43):
- Hong D, Yim S. RuO2 Thin Films Electrodeposited on Polystyrene Nanosphere Arrays: Growth Mechanism and Application to Supercapacitor Electrodes. Langmuir 2018; 34(14):
- Ikram A, Zulfequar M, Satsangi VR. Role and prospects of green quantum dots in photoelectrochemical hydrogen generation: A review. Int J Hydrogen Energy 2022; 47(22):11472–91
- Ismail AA, Robben L, Bahnemann DW. Study of the efficiency of UV and visible-light photocatalytic oxidation of methanol on mesoporous RuO2-TiO2 nanocomposites. ChemPhysChem. 2011; 12(5):
- Jeong D, Jo W, Jeong J, Kim T, Han S, ve ark., Characterization of Cu2O/CuO heterostructure photocathode by tailoring CuO thickness for photoelectrochemical water splitting. RSC Adv. 2022; 12(5):
- Jin J, Fu M, Wang L, Ma T, Li X, ve ark., Water-splitting mechanism analysis of Sr/Ca doped LaFeO3 towards commercial efficiency of solar thermochemical H2 production. Int J Hydrogen Energy 2021; 46(2):
- Kalanoor BS, Seo H, Kalanur SS. Multiple ion doping in BiVO4 as an effective strategy of enhancing photoelectrochemical water splitting: A review 2021;
Kavan L. Electrochemistry and dye-sensitized solar cells 2017;
- Kim H, Bae S, Jeon D, Ryu J. Fully solution-processable Cu2O-BiVO4 photoelectrochemical cells for bias-free solar water splitting. Green Chemistry 2018; 20(16):
- Kim MW, Samuel E, Kim K, Yoon H, Joshi B, ve ark., Tuning the morphology of electrosprayed BiVO4 from nanopillars to nanoferns via pH control for solar water splitting. J Alloys Compd. 2017; 769:
Kyesmen PI, Nombona N, Diale M. 2021. Heterojunction of nanostructured α-Fe2O3/CuO for enhancement of photoelectrochemical water splitting. J Alloys Compd. 2018; 863:
- le Minh Tri N, Trung DQ, van Thuan D, Dieu Cam NT, al Tahtamouni T. The advanced photocatalytic performance of V doped CuWO4 for water splitting to produce hydrogen. Int J Hydrogen Energy 2020; 45(36):
Lee SH, Liu P, Cheong HM, Edwin Trecy C, Deb SK. Electrochromism of amorphous ruthenium oxide thin films. Solid State Ion. 2003; 165(1–4):
Li Y, Zhu S, Liang Y, Li Z, Wu S, ve ark., Synthesis of α-Fe2O3/g-C3N4 photocatalyst for high-efficiency water splitting under full light. Mater Des. 2020; 196:
- Mahalingam S, Abdullah H. Electron transport study of indium oxide as photoanode in DSSCs: A review 2016;
- Mao L, Mohan S, Gupta SK, Mao Y. Multifunctional delafossite CuFeO2 as water splitting catalyst and rhodamine B sensor. Mater Chem Phys. 2022; 278:
- Murillo-Sierra JC, Hernández-Ramírez A, Hinojosa-Reyes L, Guzmán-Mar JL. A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications 2021;
- Osada M, Nishio K, Lee K, Colletta M, Goodge B.H. Highly Efficient Surface Charge Transfer in Fe2TiO5Epitaxial Thin Film Photoanodes. ACS Appl Energy Mater. 2021; 4(3):
- Saraswat SK, Rodene DD, Gupta RB. Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light. Renewable and Sustainable Energy Reviews. 2018; 89:228–48
- Sarkar S, Das NS, Chattopadhyay KK. Optical constants, dispersion energy parameters and dielectric properties of ultra-smooth nanocrystalline BiVO4 thin films prepared by rf-magnetron sputtering. Solid State Sci. 2014; 33:
- Shi YJ, Pei J, Zhang J, Niu JL, Zhang H. Enhanced corrosion resistance and cytocompatibility of biodegradable Mg alloys by introduction of Mg(OH)2 particles into poly (L-lactic acid) coating. Sci Rep. 2017; 7:
- Sone BT, Manikandan E, Gurib-Fakim A, Maaza M. Single-phase α-Cr2O3nanoparticles’ green synthesis using Callistemon viminalis’ red flower extract. Green Chem Lett Rev. 2016; 9(2):
- Sugawara Y, Kamata K, Ishikawa A, Tateyama Y, Yamaguchi T. Efficient Oxygen Evolution Electrocatalysis on CaFe2O4and Its Reaction Mechanism. ACS Appl Energy Mater. 2021; 4(4):
- Thomas CES. Conclusions: “stopping climate change: The case for coal and hydrogen.” In Lecture Notes in Energy, Vol. 2017; 35
- Tsuji E, Imanishi A, Fukui KI, Nakato Y. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution. Electrochim Acta. 2011; 56(5):
- Wang J, Lu Z, Ling Y, Wang R, Li Y. Hydrogen permeation properties of CrxCy@Cr2O3/Al2O3 composite coating derived from selective oxidation of a Cr–C alloy and atomic layer deposition. Int J Hydrogen Energy 2018; 43(45):
- Wang Y, Zhang J, Balogun M-S, Tong Y, Huang Y. Oxygen vacancy–based metal oxides photoanodes in photoelectrochemical water splitting. Materials Today Sustainability 2022; 18:100118
- Xie Y, Yao C. Electrochemical performance of RuO2-TiO2 nanotube hybrid electrode material. Mater Res Express. 2019; 6(12):
- Xie Y, Yao C. Electrochemical performance of RuO2-TiO2 nanotube hybrid electrode material. Mater Res Express. 2019; 6(12):
- Xiong K, Li L, Deng Z, Xia M, Chen S, ve ark., RuO2 loaded into porous Ni as a synergistic catalyst for hydrogen production. RSC Adv. 2014; 4(39):
- Yu Y, Yin X, Kvit A, Wang X. Evolution of hollow TiO2 nanostructures via the Kirkendall effect driven by cation exchange with enhanced photoelectrochemical performance. Nano Lett. 2014; 14(5):2528–35