Araştırma Makalesi
BibTex RIS Kaynak Göster

FUCOM ve MOORA Yöntemleri ile Hidrojen Enerjisinde Risk Faktörlerine Göre Tesis Yeri Seçimi

Yıl 2025, Cilt: 8 Sayı: 1, 266 - 284, 17.01.2025
https://doi.org/10.47495/okufbed.1484660

Öz

Fosil yakıtların tükenmesi, küresel ısınmayı önlemek, yaşanabilir ve sürdürebilir bir yaşam için temiz enerjinin önemi giderek artmaktadır. Bunu sağlamak için kullanılan yenilenebilir enerjiler çok çeşitlidir. Bu kaynaklardan olan hidrojen enerjisi bu çalışmanın konusunu oluşturmaktadır. Hidrojen enerjisi, bu yüzyılın devamında en popüler enerji kaynağı olarak görülmektedir. Bu enerji tesisinin kurulumunun, üretiminin, taşınmasının ve depolanmasının içerdiği tehlikeler ve sonucunda oluşan riskler vardır. Yenilenebilir enerjiyi en uygun biçimde kullanabilmek ve maksimum yarar sağlayabilmek için bu risklerin tespiti, tanımlanması, analiz edilmesi ve önlenmesi gerekmektedir. Bu çalışmada, hidrojen enerjisi üretim ve depolama tesisinde oluşması muhtemel tehlikeli durumlar ve riskler literatür taraması yoluyla analiz edilmiştir. Elde edilen risk faktörleri tecrübeli sektör çalışanları ve konusunda uzman akademisyenlerce değerlendirilmiştir. Hidrojen enerji tesis yeri seçimi için en önemli faktörlerden olan risk göz önüne alınarak yapılan ilk çalışma olması sebebiyle literatüre katkı sağlamaktadır. Karada veya denizde kurulması opsiyonel olan hidrojen enerji santrali için, risk faktörleri çerçevesinden FUCOM ve MOORA yöntemleri ile değerlendirme yapılmış ve enerji santralinin karada kurulmasına karar verilmiştir.

Destekleyen Kurum

Yükseköğretim Kurulu (YÖK) 100/2000 Doktora Bursu

Kaynakça

  • Abohamzeh E., Salehi F., Sheikholeslami M., Abbassi R., Khan F. Review of hydrogen safety during storage, transmission, and applications processes. Journal of Loss Prevention in the Process Industries 2021; 72(3): 104569.
  • Albertus P., Manser JS., Litzelman S. Long-duration electricity storage applications. Economics, and Technologies Joule 2020; 4(1): 21–32.
  • Aprea JL. Hydrogen energy demonstration plant in Patagonia: Description and safety issues. International Journal of Hydrogen Energy 2009; 34(10): 4684–4691.
  • Bermudez JM., Hannula İ. Hydrogen. Iea. 2021. https://www.iea.org/reports/hydrogen
  • Brauers WKM., Zavadskas EK. The MOORA method and its application to privatization in a transition economy. Control and Cybernetics 2006; 35(2): 445–469.
  • Chang Y., Zhang C., Shi J., Li J., Zhang S., Chen, G. Dynamic Bayesian network based approach for risk analysis of hydrogen generation unit leakage. International Journal of Hydrogen Energy 2019; 44(48): 26665- 26678.
  • Correa-Jullian C., Groth KM. Data requirements for improving the quantitative risk assessment of liquid hydrogen storage systems. International Journal of Hydrogen Energy 2022; 47(6):4222- 4235.
  • Cristina Galassi M., Papanikolaou E., Baraldi D., Funnemark E., Håland E., Engebo A., Haugom GP., Jordan T., Tchouvelev AV. HIAD-hydrogen incident and accident database. International Journal of Hydrogen Energy 2012; 37(22): 17351–17357.
  • Gökler SH. Optimal site selection for electric vehicle charging stations: Analysis with hybrid FUCOM and geographic information systems. Energy 2024; 307: 132659-132673.
  • Gölcük İ., Durmaz ED., Şahin R. Prioritizing occupational safety risks with fuzzy FUCOM and fuzzy graph theory-matrix approach. Journal of the Faculty of Engineering and Architecture of Gazi University 2023; 38(1): 57–69.
  • Groth KM., Hecht ES. HyRAM: A methodology and toolkit for quantitative risk assessment of hydrogen systems. International Journal of Hydrogen Energy 2017; 42(11): 7485-7493.
  • Groth KM., Hecht ES., Reynolds JT. Methodology for assessing the safety of Hydrogen Systems : HyRAM 1 . 0 technical reference manual. Sandia Report 2015; March: 1-44.
  • Groth KM., Tchouvelev AV. A toolkit for integrated deterministic and probabilistic risk assessment for hydrogen infrastructure. Probabilistic Safety Assessment and Management 2014: 1-11.
  • Hadef H., Negrou B., Ayuso TG., Djebabra M., Ramadan M. Preliminary hazard identification for risk assessment on a complex system for hydrogen production. International Journal of Hydrogen Energy 2020; 45(20): 11855-11865.
  • Hansen OR. Hydrogen infrastructure-Efficient risk assessment and design optimization approach to ensure safe and practical solutions. Process Safety and Environmental Protection 2020; 143; 164–176.
  • Haugom GP., Friis-Hansen P. Risk modelling of a hydrogen refuelling station using Bayesian network. International Journal of Hydrogen Energy 2011; 36(3): 2389-2397.
  • Honselaar M., Pasaoglu G., Martens A. Hydrogen refuelling stations in the Netherlands: An intercomparison of quantitative risk assessments used for permitting. International Journal of Hydrogen Energy 2018; 43(27): 12278–12294.
  • Huang Y., Ma G. A grid-based risk screening method for fire and explosion events of hydrogen refuelling stations. International Journal of Hydrogen Energy 2018; 43(1): 442–454.
  • Jafari MJ., Zarei E., Badri N. The quantitative risk assessment of a hydrogen generation unit. International Journal of Hydrogen Energy 2012; 37(24): 19241-19249.
  • Kasai N., Fujimoto Y., Yamashita I., Nagaoka, H. The qualitative risk assessment of an electrolytic hydrogen generation system. International Journal of Hydrogen Energy 2016; 41(30): 13308-13314.
  • Kim J., Lee Y., Moon I. An index-based risk assessment model for hydrogen infrastructure. International Journal of Hydrogen Energy 2011; 36(11): 6387-6398.
  • Lachance J., Tchouvelev A., Engebo A. Development of uniform harm criteria for use in quantitative risk analysis of the hydrogen infrastructure. International Journal of Hydrogen Energy 2011; 36(3): 2381-2388.
  • LaFleur AC., Muna AB., Groth KM. Application of quantitative risk assessment for performance-based permitting of hydrogen fueling stations. International Journal of Hydrogen Energy 2017; 42(11): 7529–7535.
  • Lam CY., Fuse M., Shimizu T. Assessment of risk factors and effects in hydrogen logistics incidents from a network modeling perspective. International Journal of Hydrogen Energy 2019; 44(36): 20572–20586.
  • Li X., Han Z., Zhang R., Zhang Y., Zhang L. Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach. International Journal of Hydrogen Energy 2020; 45(53): 29630–29642.
  • Lowesmith BJ., Hankinson G., Chynoweth S. Safety issues of the liquefaction, storage and transportation of liquid hydrogen: An analysis of incidents and HAZIDS. International Journal of Hydrogen Energy 2014; 39(35): 20516–20521.
  • Malakhov AA., Avdeenkov AV., du Toit MH., Bessarabov DG. CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation. International Journal of Hydrogen Energy 2020; 45(15): 9231–9240.
  • Mirza NR., Degenkolbe S., Witt W. Analysis of hydrogen incidents to support risk assessment. International Journal of Hydrogen Energy 2011; 36(18): 12068-12077.
  • Mohammadfam I., Zarei E. Safety risk modeling and major accidents analysis of hydrogen and natural gas releases: A comprehensive risk analysis framework. International Journal of Hydrogen Energy 2015; 40(39): 13653-13663.
  • Moonis M., Wilday AJ., Wardman MJ. Semi-quantitative risk assessment of commercial scale supply chain of hydrogen fuel and implications for industry and society. Process Safety and Environmental Protection 2010; 88(2): 97-108.
  • Moradi R., Groth KM. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. In International Journal of Hydrogen Energy 2019; 44(23): 12254-12269.
  • Najjar YSH. Hydrogen safety: The road toward green technology. International Journal of Hydrogen Energy 2013; 38(25): 10716–10728.
  • Nasseri H., Chen HK., Huo KZ., Lo YF. A Hybrid grey decision methodology in social sustainable supplier selection. Sustainability 2023;15: 11777-11781.
  • Nila B., Roy J. A new hybrid MCDM framework for third-party logistics provider selection under sustainability perspectives. Expert Systems with Applications 2023; 234: 121009-121033.
  • Nemati A., Hashemkhani Zolfani S., Khazaelpour, P. A novel gray FUCOM method and its application for better video games experiences. Expert Systems with Applications 2023; 234: 121041-121061.
  • Norouzi N. An overview on the renewable hydrogen generation market. International Journal of Energy Research 2021; 7513(1): 1–2.
  • Pamučar D., Stević Ž., Sremac S. A new model for determining weight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM). Symmetry 2018; 10(9): 1–22.
  • Pasman HJ. Challenges to improve confidence level of risk assessment of hydrogen technologies. International Journal of Hydrogen Energy 2011; 36(3): 2407-2413.
  • Pu L., Shao X., Zhang S., Lei G., Li Y. Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage. Asia-Pacific Journal of Chemical Engineering 2019; 14(2): 2299.
  • Shi J., Chang B., Khan F., Chang Y., Zhu Y., Chen G., Zhang C. Stochastic explosion risk analysis of hydrogen production facilities. International Journal of Hydrogen Energy 2020; 45(24): 13535-13550.
  • Skjold T., Siccama D., Hisken H., Brambilla A., Middha P., Groth KM., LaFleur AC. 3D risk management for hydrogen installations. International Journal of Hydrogen Energy 2017; 42(11): 7721-7730.
  • Spada M., Burgherr P., Boutinard Rouelle P. Comparative risk assessment with focus on hydrogen and selected fuel cells: Application to Europe. International Journal of Hydrogen Energy 2018; 43(19): 9470–9481.
  • Ustolin F., Paltrinieri N., Landucci G. An innovative and comprehensive approach for the consequence analysis of liquid hydrogen vessel explosions. Journal of Loss Prevention in the Process Industries 2020; 68.
  • Yoo BH., Wilailak S., Bae SH., Gye HR., Lee CJ. Comparative risk assessment of liquefied and gaseous hydrogen refueling stations. International Journal of Hydrogen Energy 2021; 46(71): 35511–35524.
  • Zarei E., Khan F., Yazdi M. A dynamic risk model to analyze hydrogen infrastructure. International Journal of Hydrogen Energy 2021; 46(5): 4626-4643.
  • Zhiyong L., Xiangmin P., Jianxin M. Quantitative risk assessment on a gaseous hydrogen refueling station in Shanghai. International Journal of Hydrogen Energy 2010; 35(13): 6822-6829.
  • Zhiyong L., Xiangmin P., Jianxin M. Quantitative risk assessment on 2010 Expo hydrogen station. International Journal of Hydrogen Energy 2011; 36(6): 4079-4086

Facility Location Selection According to Risk Factors in Hydrogen Energy with FUCOM and MOORA

Yıl 2025, Cilt: 8 Sayı: 1, 266 - 284, 17.01.2025
https://doi.org/10.47495/okufbed.1484660

Öz

The importance of clean energy is gradually increasing for the depletion of fossil fuels, preventing global warming, and a livable and sustainable life. The renewable energies used to achieve this are very diverse. Hydrogen energy from these sources is the subject of this study. Hydrogen energy is seen as the most popular energy source for the rest of this century. There are hazards and consequent risks involved in the installation, production, transportation and storage of this power plant. In order to use renewable energy in the most appropriate way and to provide maximum benefit, these risks need to be identified, defined, analyzed and prevented. In this study, possible dangerous situations and risks that may occur in the hydrogen energy production and storage facility were analyzed through literature review. Obtained risk factors were evaluated by experienced sector workers and academicians specializing in hydrogen energy. For the hydrogen power plant which is optional to be built on land or at sea, an evaulation was made with the FUCOM and MOORA methods within the framework of risk factors, and it was decided to establish the power plant on land.

Kaynakça

  • Abohamzeh E., Salehi F., Sheikholeslami M., Abbassi R., Khan F. Review of hydrogen safety during storage, transmission, and applications processes. Journal of Loss Prevention in the Process Industries 2021; 72(3): 104569.
  • Albertus P., Manser JS., Litzelman S. Long-duration electricity storage applications. Economics, and Technologies Joule 2020; 4(1): 21–32.
  • Aprea JL. Hydrogen energy demonstration plant in Patagonia: Description and safety issues. International Journal of Hydrogen Energy 2009; 34(10): 4684–4691.
  • Bermudez JM., Hannula İ. Hydrogen. Iea. 2021. https://www.iea.org/reports/hydrogen
  • Brauers WKM., Zavadskas EK. The MOORA method and its application to privatization in a transition economy. Control and Cybernetics 2006; 35(2): 445–469.
  • Chang Y., Zhang C., Shi J., Li J., Zhang S., Chen, G. Dynamic Bayesian network based approach for risk analysis of hydrogen generation unit leakage. International Journal of Hydrogen Energy 2019; 44(48): 26665- 26678.
  • Correa-Jullian C., Groth KM. Data requirements for improving the quantitative risk assessment of liquid hydrogen storage systems. International Journal of Hydrogen Energy 2022; 47(6):4222- 4235.
  • Cristina Galassi M., Papanikolaou E., Baraldi D., Funnemark E., Håland E., Engebo A., Haugom GP., Jordan T., Tchouvelev AV. HIAD-hydrogen incident and accident database. International Journal of Hydrogen Energy 2012; 37(22): 17351–17357.
  • Gökler SH. Optimal site selection for electric vehicle charging stations: Analysis with hybrid FUCOM and geographic information systems. Energy 2024; 307: 132659-132673.
  • Gölcük İ., Durmaz ED., Şahin R. Prioritizing occupational safety risks with fuzzy FUCOM and fuzzy graph theory-matrix approach. Journal of the Faculty of Engineering and Architecture of Gazi University 2023; 38(1): 57–69.
  • Groth KM., Hecht ES. HyRAM: A methodology and toolkit for quantitative risk assessment of hydrogen systems. International Journal of Hydrogen Energy 2017; 42(11): 7485-7493.
  • Groth KM., Hecht ES., Reynolds JT. Methodology for assessing the safety of Hydrogen Systems : HyRAM 1 . 0 technical reference manual. Sandia Report 2015; March: 1-44.
  • Groth KM., Tchouvelev AV. A toolkit for integrated deterministic and probabilistic risk assessment for hydrogen infrastructure. Probabilistic Safety Assessment and Management 2014: 1-11.
  • Hadef H., Negrou B., Ayuso TG., Djebabra M., Ramadan M. Preliminary hazard identification for risk assessment on a complex system for hydrogen production. International Journal of Hydrogen Energy 2020; 45(20): 11855-11865.
  • Hansen OR. Hydrogen infrastructure-Efficient risk assessment and design optimization approach to ensure safe and practical solutions. Process Safety and Environmental Protection 2020; 143; 164–176.
  • Haugom GP., Friis-Hansen P. Risk modelling of a hydrogen refuelling station using Bayesian network. International Journal of Hydrogen Energy 2011; 36(3): 2389-2397.
  • Honselaar M., Pasaoglu G., Martens A. Hydrogen refuelling stations in the Netherlands: An intercomparison of quantitative risk assessments used for permitting. International Journal of Hydrogen Energy 2018; 43(27): 12278–12294.
  • Huang Y., Ma G. A grid-based risk screening method for fire and explosion events of hydrogen refuelling stations. International Journal of Hydrogen Energy 2018; 43(1): 442–454.
  • Jafari MJ., Zarei E., Badri N. The quantitative risk assessment of a hydrogen generation unit. International Journal of Hydrogen Energy 2012; 37(24): 19241-19249.
  • Kasai N., Fujimoto Y., Yamashita I., Nagaoka, H. The qualitative risk assessment of an electrolytic hydrogen generation system. International Journal of Hydrogen Energy 2016; 41(30): 13308-13314.
  • Kim J., Lee Y., Moon I. An index-based risk assessment model for hydrogen infrastructure. International Journal of Hydrogen Energy 2011; 36(11): 6387-6398.
  • Lachance J., Tchouvelev A., Engebo A. Development of uniform harm criteria for use in quantitative risk analysis of the hydrogen infrastructure. International Journal of Hydrogen Energy 2011; 36(3): 2381-2388.
  • LaFleur AC., Muna AB., Groth KM. Application of quantitative risk assessment for performance-based permitting of hydrogen fueling stations. International Journal of Hydrogen Energy 2017; 42(11): 7529–7535.
  • Lam CY., Fuse M., Shimizu T. Assessment of risk factors and effects in hydrogen logistics incidents from a network modeling perspective. International Journal of Hydrogen Energy 2019; 44(36): 20572–20586.
  • Li X., Han Z., Zhang R., Zhang Y., Zhang L. Risk assessment of hydrogen generation unit considering dependencies using integrated DEMATEL and TOPSIS approach. International Journal of Hydrogen Energy 2020; 45(53): 29630–29642.
  • Lowesmith BJ., Hankinson G., Chynoweth S. Safety issues of the liquefaction, storage and transportation of liquid hydrogen: An analysis of incidents and HAZIDS. International Journal of Hydrogen Energy 2014; 39(35): 20516–20521.
  • Malakhov AA., Avdeenkov AV., du Toit MH., Bessarabov DG. CFD simulation and experimental study of a hydrogen leak in a semi-closed space with the purpose of risk mitigation. International Journal of Hydrogen Energy 2020; 45(15): 9231–9240.
  • Mirza NR., Degenkolbe S., Witt W. Analysis of hydrogen incidents to support risk assessment. International Journal of Hydrogen Energy 2011; 36(18): 12068-12077.
  • Mohammadfam I., Zarei E. Safety risk modeling and major accidents analysis of hydrogen and natural gas releases: A comprehensive risk analysis framework. International Journal of Hydrogen Energy 2015; 40(39): 13653-13663.
  • Moonis M., Wilday AJ., Wardman MJ. Semi-quantitative risk assessment of commercial scale supply chain of hydrogen fuel and implications for industry and society. Process Safety and Environmental Protection 2010; 88(2): 97-108.
  • Moradi R., Groth KM. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. In International Journal of Hydrogen Energy 2019; 44(23): 12254-12269.
  • Najjar YSH. Hydrogen safety: The road toward green technology. International Journal of Hydrogen Energy 2013; 38(25): 10716–10728.
  • Nasseri H., Chen HK., Huo KZ., Lo YF. A Hybrid grey decision methodology in social sustainable supplier selection. Sustainability 2023;15: 11777-11781.
  • Nila B., Roy J. A new hybrid MCDM framework for third-party logistics provider selection under sustainability perspectives. Expert Systems with Applications 2023; 234: 121009-121033.
  • Nemati A., Hashemkhani Zolfani S., Khazaelpour, P. A novel gray FUCOM method and its application for better video games experiences. Expert Systems with Applications 2023; 234: 121041-121061.
  • Norouzi N. An overview on the renewable hydrogen generation market. International Journal of Energy Research 2021; 7513(1): 1–2.
  • Pamučar D., Stević Ž., Sremac S. A new model for determining weight coefficients of criteria in MCDM models: Full Consistency Method (FUCOM). Symmetry 2018; 10(9): 1–22.
  • Pasman HJ. Challenges to improve confidence level of risk assessment of hydrogen technologies. International Journal of Hydrogen Energy 2011; 36(3): 2407-2413.
  • Pu L., Shao X., Zhang S., Lei G., Li Y. Plume dispersion behaviour and hazard identification for large quantities of liquid hydrogen leakage. Asia-Pacific Journal of Chemical Engineering 2019; 14(2): 2299.
  • Shi J., Chang B., Khan F., Chang Y., Zhu Y., Chen G., Zhang C. Stochastic explosion risk analysis of hydrogen production facilities. International Journal of Hydrogen Energy 2020; 45(24): 13535-13550.
  • Skjold T., Siccama D., Hisken H., Brambilla A., Middha P., Groth KM., LaFleur AC. 3D risk management for hydrogen installations. International Journal of Hydrogen Energy 2017; 42(11): 7721-7730.
  • Spada M., Burgherr P., Boutinard Rouelle P. Comparative risk assessment with focus on hydrogen and selected fuel cells: Application to Europe. International Journal of Hydrogen Energy 2018; 43(19): 9470–9481.
  • Ustolin F., Paltrinieri N., Landucci G. An innovative and comprehensive approach for the consequence analysis of liquid hydrogen vessel explosions. Journal of Loss Prevention in the Process Industries 2020; 68.
  • Yoo BH., Wilailak S., Bae SH., Gye HR., Lee CJ. Comparative risk assessment of liquefied and gaseous hydrogen refueling stations. International Journal of Hydrogen Energy 2021; 46(71): 35511–35524.
  • Zarei E., Khan F., Yazdi M. A dynamic risk model to analyze hydrogen infrastructure. International Journal of Hydrogen Energy 2021; 46(5): 4626-4643.
  • Zhiyong L., Xiangmin P., Jianxin M. Quantitative risk assessment on a gaseous hydrogen refueling station in Shanghai. International Journal of Hydrogen Energy 2010; 35(13): 6822-6829.
  • Zhiyong L., Xiangmin P., Jianxin M. Quantitative risk assessment on 2010 Expo hydrogen station. International Journal of Hydrogen Energy 2011; 36(6): 4079-4086
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji, Yenilenebilir Enerji Sistemleri, Endüstri Mühendisliği
Bölüm Araştırma Makaleleri (RESEARCH ARTICLES)
Yazarlar

Ayşe Nuray Canat

Coşkun Özkan

Erken Görünüm Tarihi 15 Ocak 2025
Yayımlanma Tarihi 17 Ocak 2025
Gönderilme Tarihi 15 Mayıs 2024
Kabul Tarihi 10 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Canat, A. N., & Özkan, C. (2025). FUCOM ve MOORA Yöntemleri ile Hidrojen Enerjisinde Risk Faktörlerine Göre Tesis Yeri Seçimi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 266-284. https://doi.org/10.47495/okufbed.1484660
AMA Canat AN, Özkan C. FUCOM ve MOORA Yöntemleri ile Hidrojen Enerjisinde Risk Faktörlerine Göre Tesis Yeri Seçimi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. Ocak 2025;8(1):266-284. doi:10.47495/okufbed.1484660
Chicago Canat, Ayşe Nuray, ve Coşkun Özkan. “FUCOM Ve MOORA Yöntemleri Ile Hidrojen Enerjisinde Risk Faktörlerine Göre Tesis Yeri Seçimi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, sy. 1 (Ocak 2025): 266-84. https://doi.org/10.47495/okufbed.1484660.
EndNote Canat AN, Özkan C (01 Ocak 2025) FUCOM ve MOORA Yöntemleri ile Hidrojen Enerjisinde Risk Faktörlerine Göre Tesis Yeri Seçimi. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 1 266–284.
IEEE A. N. Canat ve C. Özkan, “FUCOM ve MOORA Yöntemleri ile Hidrojen Enerjisinde Risk Faktörlerine Göre Tesis Yeri Seçimi”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, c. 8, sy. 1, ss. 266–284, 2025, doi: 10.47495/okufbed.1484660.
ISNAD Canat, Ayşe Nuray - Özkan, Coşkun. “FUCOM Ve MOORA Yöntemleri Ile Hidrojen Enerjisinde Risk Faktörlerine Göre Tesis Yeri Seçimi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/1 (Ocak 2025), 266-284. https://doi.org/10.47495/okufbed.1484660.
JAMA Canat AN, Özkan C. FUCOM ve MOORA Yöntemleri ile Hidrojen Enerjisinde Risk Faktörlerine Göre Tesis Yeri Seçimi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:266–284.
MLA Canat, Ayşe Nuray ve Coşkun Özkan. “FUCOM Ve MOORA Yöntemleri Ile Hidrojen Enerjisinde Risk Faktörlerine Göre Tesis Yeri Seçimi”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 8, sy. 1, 2025, ss. 266-84, doi:10.47495/okufbed.1484660.
Vancouver Canat AN, Özkan C. FUCOM ve MOORA Yöntemleri ile Hidrojen Enerjisinde Risk Faktörlerine Göre Tesis Yeri Seçimi. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(1):266-84.

23487




196541947019414  

1943319434 19435194361960219721 19784  2123822610 23877

* Uluslararası Hakemli Dergi (International Peer Reviewed Journal)

* Yazar/yazarlardan hiçbir şekilde MAKALE BASIM ÜCRETİ vb. şeyler istenmemektedir (Free submission and publication).

* Yılda Ocak, Mart, Haziran, Eylül ve Aralık'ta olmak üzere 5 sayı yayınlanmaktadır (Published 5 times a year)

* Dergide, Türkçe ve İngilizce makaleler basılmaktadır.

*Dergi açık erişimli bir dergidir.

Creative Commons License

Bu web sitesi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.