Araştırma Makalesi
BibTex RIS Kaynak Göster

Farklı kompozit malzemelerin üretilmesi ve bazı teknik özelliklerinin belirlenmesi

Yıl 2015, Cilt: 30 Sayı: 1, 43 - 50, 01.02.2015
https://doi.org/10.7161/anajas.2015.30.1.43-50

Öz

Bu çalışmada; keten lifi, mısır sapı, ayçiçeği sapı, su kamışı, arpa samanı gibi beş farklı doğal destek malzemesi ile cam yünü ve karbon lifi gibi iki farklı sentetik destek malzemesi belirli oranlarda (2.5 g lif/72.5 g PE, 5 g lif/70 g PE, 7.5 g lif/67.5 g PE ve 10 g lif/65 g PE) yüksek yoğunluklu polietilen matris içerisine yerleştirilerek, lif takviyeli kompozit lamine levhalar üretilmiştir. Liflere ya da matrise herhangi bir ön kimyasal işlem uygulanmamıştır. Kompozit lamine levhalar presle kalıplama yöntemi ile üretilmiş, sonrasında ise çekme ve ısı testlerine tabi tutulmuşlardır. Sonuçlar; kompozit numunelerin çekme mukavemetlerinin desteklenmemiş polietilen numunelere göre daha düşük olduğunu fakat mısır sapı, ayçiçeği sapı ve su kamışı ile desteklenmiş kompozit numunelerin, cam yünü ve karbon lifi ile desteklenmiş kompozit numunelere çok yakın çekme mukavemetine sahip olduğunu göstermiştir. Ayrıca kompozit numuneler yüksek sıcaklığa karşı, desteklenmemiş polietilene göre daha az deformasyon göstermişlerdir.

Kaynakça

  • Achilias, D.S., Roupakias, C., Megalokonomos, P., Lappas, A.A., Antonakou, V. 2007. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3): 536-542.
  • Ahmad, I., Lane, C. E., Mohd, D. H., Abdullah, I. 2012. Electron-beam-ırradiated rice husk powder as reinforcing filler in natural rubber/high-density polyethylene (NR/HDPE) composites. Composites Part B-Engineering, 43(8): 3069-3075.
  • Akpinar, O., Levent, O., Sabanci, S., Uysal, R.S., Sapci, B. 2011. Optimization and comparison of dilute acid pretreatment of selected agricultural residues for recovery of xylose. BioResources, 6(4): 4103-4116.
  • Aldousiri, B., Alajmi, M., Shalwan, A. 2013. Mechanical properties of palm fibre reinforced recycled HDPE. Advances in Materials Science and Engineering.
  • Anonim, 2013a. 2012 Yılı Ayçiçeği Raporu. T. C. Gümrük ve Ticaret Bakanlığı Kooperatifçilik Genel Müdürlüğü, 3-4, http://koop.gtb.gov.tr/ [Ulaşım: 15.04.2014].
  • Anonim, 2013b. Kolektör Şiltesi Ürün Kataloğu. İzocam, 1-2, http://www.izocam.com.tr/tr-tr/urunler/yalitim- uygulamalari/teknikyalitim/kollektor-siltesi.aspx. [Erişim tarihi: 16.04.2014].
  • Araujo, J.R., Waldman, W.R., De Paoli, M.A. 2008. Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polymer Degradation and Stability, 93(10): 1770-1775.
  • ASTM D4703-10, 2010. Standard practice for compression molding thermoplastic materials into test specimens, plaques, or sheets.
  • Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W. 2013. A Review on the Degradability of Polymeric Composites Based on Natural Fibres. Materials & Design, 47: 424-442.
  • Badr, A., Müller, K., Schäfer-Pregl, R., El Rabey, H., Effgen, S., Ibrahim, H.H., Pozzi, C., Rohde, W., Salamini, F. 2000. On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution, 17(4): 499-510.
  • Baley, C., Bourmaud, A. 2014. Average Tensile Properties of French Elementary Flax Fibers. Materials Letters, 122: 159-161.
  • Barone, J.R., Schmidt, W.F., Liebner, C.F.E. 2005. Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Composites Science and Technology, 65(3-4): 683-692.
  • Chai, M.W., Bickerton, S., Bhattacharyya, D., Das, R. 2012. Influence of Natural Fibre Reinforcements on the Flammability of Bio-Derived Composite Materials. Composites B,. 43(7): 2867-2874.
  • Chianelli, R., Reis, J.M.L., Cardoso, J.L., Castro, P.F. 2013. Mechanical characterization of sisal fiber-reinforced recycled HDPE composites. materials Research-Ibero-American Journal of Materials, 16(6): 1393-1397.
  • Elzubair, A., Suarez, J.C.M. 2012. Mechanical Behavior of Recycled Polyethylene/Piassava Fiber Composites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 557: 29-35.
  • Engin, K.E., 2008. Doğal Lif Takviyeli Termoplastik Malzemelerin Thermoforming Yöntemi ile Üretilmesi. Yüksek Lisans Tezi, Mersin Üniversitesi Fen Bilimleri Enstitüsü, Mersin.
  • Glew, D., Stringer, L.C., Acquaye, A.A., McQueen-Mason, S. 2012. How Do End of Life Scenarios Influence the Environmental Impact of Product Supply Chains? Comparing Biomaterial and Petrochemical Products. Journal of Cleaner Production, 30: 122-131.
  • Güzel, E. 2002. Hasat-Harman İlkeleri ve Makinaları. Çukurova Üniversitesi Yayınları, 194 (A-60), Adana.
  • Holm LeRoy, G., Plocknett, D.L,. Pancho, J.V., Herberger, J.P. 1977. The World's Worst Weeds: Distribution and Biology. University Press of Hawaii, 609, Honolulu.
  • Kraiem, D., Pimbert, S., Ayadi, A., Bradai, C. 2013. Effect of Low Content Reed (Phragmite australis) Fibers on The Mechanical Properties of Recycled HDPE Composites. Composites: Part B, (44): 368-374.
  • Kumar, S., Panda, A.K., Singh, R.K. 2011. A Review on Tertiary Recycling of High Density Polyethylene to Fuel. Resources, Conservation and Recycling, 55(11): 893-910.
  • Lee, D., Owens, V.N., Boe, A., Jeranyama, P. 2007. Composition of Herbaceous Biomass Feedstocks. North Central Sun Grant Center South Dakota State University, 1-07.
  • Mohanty, A., Misra, M., Hinrichsen, G. 2000. Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromol Mater Eng., 276(1): 1-24.
  • Mwaikambo, L.Y, Ansell, M.P. 2006. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. Journal of Materials Science; 41(8): 2483-2496.
  • Panthapulakkal, S., Torres, F.G. 2002. Chemical Modification of Hemp, Sisal, Jute and Kapok Fibers by Alkalization. J., Appl. Polym. Sci. 84: 2222-2234.
  • Panthapulakkal, S., Sain M. 2007. Agro-Residue Reinforced High-Density Polyethylene Composites: Fiber Characterization and Analysis of Composite Properties. Composites Part a-Applied Science and Manufacturing, 38(6): 1445-1454.
  • Parada-Soria, A., Yao, H.F., Alvarado-Tenorio, B., Sanchez- Cadena, L., Romo-Uribe, A. 2013. Recycled HDPE-Tetrapack Composites. Isothermal Crystallization, Light Scattering and Mechanical Properties. MRS Proceedings, 1485.
  • Saçak, M. 1994. Lif Kimyası. A.O.F.F. Döner Sermaye İşletmesi Yayınları, 8, Ankara.
  • Shalwan, A., Yousif, B. F. 2013. In State of Art: Mechanical and Tribological Behaviour of Polymeric Composites Based on Natural Fibres. Materials & Design: 48: 14-24.
  • Strausbaugh, P.D., Core, E.L. 1977. Flora of West Virginia. 2nd edition. WV: Seneca Books, Inc. 1079, Morgantown.
  • TS EN ISO 527-2: Plastikler-Çekme Özelliklerinin Tayini-Bölüm 2: Kalıplama ve Ekstrüzyon Plastikleri İçin Deney Şartları., Türk Standartları Enstitüsü, Ankara.
  • Yaman, N., Öktem, T., Seventekin, N. 2007. Karbon Liflerinin Özellikleri ve Kullanım Olanakları. Tekstil ve Konfeksiyon, 2: 90-95.

Production of different composite materials and determination of some technical properties

Yıl 2015, Cilt: 30 Sayı: 1, 43 - 50, 01.02.2015
https://doi.org/10.7161/anajas.2015.30.1.43-50

Öz

In this study, five different natural reinforce materials as flax fiber, corn stalk, sunflower stalk, reedmace, barley straw and two different synthetic reinforce materials as glass fibers and carbon fibers with different ratios (2.5 g fiber/72.5 g PE, 5 g fiber/70 g PE, 7.5 g fiber/67.5 g PE and 10 g fiber/65 g PE) were placed inside high density polyethylene matrix to produce fiber reinforced composite. No chemical pretreatment were made to the fibers or the matrix. Composite laminate sheets were produced by compression molding process, then tensile tests and heat tests were conducted. Results show that; tensile strengths of the composite samples are lower than unreinforced polyethylene but corn stalk, sunflower stalk and reedmace reinforced sample’s tensile strengths are very close to the composite samples reinforced with glass and carbon fibers. Furthermore most composites show lower deformation against high temperature than unreinforced polyethylene.

Kaynakça

  • Achilias, D.S., Roupakias, C., Megalokonomos, P., Lappas, A.A., Antonakou, V. 2007. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP). Journal of Hazardous Materials, 149(3): 536-542.
  • Ahmad, I., Lane, C. E., Mohd, D. H., Abdullah, I. 2012. Electron-beam-ırradiated rice husk powder as reinforcing filler in natural rubber/high-density polyethylene (NR/HDPE) composites. Composites Part B-Engineering, 43(8): 3069-3075.
  • Akpinar, O., Levent, O., Sabanci, S., Uysal, R.S., Sapci, B. 2011. Optimization and comparison of dilute acid pretreatment of selected agricultural residues for recovery of xylose. BioResources, 6(4): 4103-4116.
  • Aldousiri, B., Alajmi, M., Shalwan, A. 2013. Mechanical properties of palm fibre reinforced recycled HDPE. Advances in Materials Science and Engineering.
  • Anonim, 2013a. 2012 Yılı Ayçiçeği Raporu. T. C. Gümrük ve Ticaret Bakanlığı Kooperatifçilik Genel Müdürlüğü, 3-4, http://koop.gtb.gov.tr/ [Ulaşım: 15.04.2014].
  • Anonim, 2013b. Kolektör Şiltesi Ürün Kataloğu. İzocam, 1-2, http://www.izocam.com.tr/tr-tr/urunler/yalitim- uygulamalari/teknikyalitim/kollektor-siltesi.aspx. [Erişim tarihi: 16.04.2014].
  • Araujo, J.R., Waldman, W.R., De Paoli, M.A. 2008. Thermal properties of high density polyethylene composites with natural fibres: Coupling agent effect. Polymer Degradation and Stability, 93(10): 1770-1775.
  • ASTM D4703-10, 2010. Standard practice for compression molding thermoplastic materials into test specimens, plaques, or sheets.
  • Azwa, Z.N., Yousif, B.F., Manalo, A.C., Karunasena, W. 2013. A Review on the Degradability of Polymeric Composites Based on Natural Fibres. Materials & Design, 47: 424-442.
  • Badr, A., Müller, K., Schäfer-Pregl, R., El Rabey, H., Effgen, S., Ibrahim, H.H., Pozzi, C., Rohde, W., Salamini, F. 2000. On the origin and domestication history of barley (Hordeum vulgare). Molecular Biology and Evolution, 17(4): 499-510.
  • Baley, C., Bourmaud, A. 2014. Average Tensile Properties of French Elementary Flax Fibers. Materials Letters, 122: 159-161.
  • Barone, J.R., Schmidt, W.F., Liebner, C.F.E. 2005. Compounding and molding of polyethylene composites reinforced with keratin feather fiber. Composites Science and Technology, 65(3-4): 683-692.
  • Chai, M.W., Bickerton, S., Bhattacharyya, D., Das, R. 2012. Influence of Natural Fibre Reinforcements on the Flammability of Bio-Derived Composite Materials. Composites B,. 43(7): 2867-2874.
  • Chianelli, R., Reis, J.M.L., Cardoso, J.L., Castro, P.F. 2013. Mechanical characterization of sisal fiber-reinforced recycled HDPE composites. materials Research-Ibero-American Journal of Materials, 16(6): 1393-1397.
  • Elzubair, A., Suarez, J.C.M. 2012. Mechanical Behavior of Recycled Polyethylene/Piassava Fiber Composites. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 557: 29-35.
  • Engin, K.E., 2008. Doğal Lif Takviyeli Termoplastik Malzemelerin Thermoforming Yöntemi ile Üretilmesi. Yüksek Lisans Tezi, Mersin Üniversitesi Fen Bilimleri Enstitüsü, Mersin.
  • Glew, D., Stringer, L.C., Acquaye, A.A., McQueen-Mason, S. 2012. How Do End of Life Scenarios Influence the Environmental Impact of Product Supply Chains? Comparing Biomaterial and Petrochemical Products. Journal of Cleaner Production, 30: 122-131.
  • Güzel, E. 2002. Hasat-Harman İlkeleri ve Makinaları. Çukurova Üniversitesi Yayınları, 194 (A-60), Adana.
  • Holm LeRoy, G., Plocknett, D.L,. Pancho, J.V., Herberger, J.P. 1977. The World's Worst Weeds: Distribution and Biology. University Press of Hawaii, 609, Honolulu.
  • Kraiem, D., Pimbert, S., Ayadi, A., Bradai, C. 2013. Effect of Low Content Reed (Phragmite australis) Fibers on The Mechanical Properties of Recycled HDPE Composites. Composites: Part B, (44): 368-374.
  • Kumar, S., Panda, A.K., Singh, R.K. 2011. A Review on Tertiary Recycling of High Density Polyethylene to Fuel. Resources, Conservation and Recycling, 55(11): 893-910.
  • Lee, D., Owens, V.N., Boe, A., Jeranyama, P. 2007. Composition of Herbaceous Biomass Feedstocks. North Central Sun Grant Center South Dakota State University, 1-07.
  • Mohanty, A., Misra, M., Hinrichsen, G. 2000. Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromol Mater Eng., 276(1): 1-24.
  • Mwaikambo, L.Y, Ansell, M.P. 2006. Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. Journal of Materials Science; 41(8): 2483-2496.
  • Panthapulakkal, S., Torres, F.G. 2002. Chemical Modification of Hemp, Sisal, Jute and Kapok Fibers by Alkalization. J., Appl. Polym. Sci. 84: 2222-2234.
  • Panthapulakkal, S., Sain M. 2007. Agro-Residue Reinforced High-Density Polyethylene Composites: Fiber Characterization and Analysis of Composite Properties. Composites Part a-Applied Science and Manufacturing, 38(6): 1445-1454.
  • Parada-Soria, A., Yao, H.F., Alvarado-Tenorio, B., Sanchez- Cadena, L., Romo-Uribe, A. 2013. Recycled HDPE-Tetrapack Composites. Isothermal Crystallization, Light Scattering and Mechanical Properties. MRS Proceedings, 1485.
  • Saçak, M. 1994. Lif Kimyası. A.O.F.F. Döner Sermaye İşletmesi Yayınları, 8, Ankara.
  • Shalwan, A., Yousif, B. F. 2013. In State of Art: Mechanical and Tribological Behaviour of Polymeric Composites Based on Natural Fibres. Materials & Design: 48: 14-24.
  • Strausbaugh, P.D., Core, E.L. 1977. Flora of West Virginia. 2nd edition. WV: Seneca Books, Inc. 1079, Morgantown.
  • TS EN ISO 527-2: Plastikler-Çekme Özelliklerinin Tayini-Bölüm 2: Kalıplama ve Ekstrüzyon Plastikleri İçin Deney Şartları., Türk Standartları Enstitüsü, Ankara.
  • Yaman, N., Öktem, T., Seventekin, N. 2007. Karbon Liflerinin Özellikleri ve Kullanım Olanakları. Tekstil ve Konfeksiyon, 2: 90-95.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tarım Makineleri
Yazarlar

Kaan Engin

Turhan Koyuncu

Fuat Lüle

Yayımlanma Tarihi 1 Şubat 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 30 Sayı: 1

Kaynak Göster

APA Engin, K., Koyuncu, T., & Lüle, F. (2015). Farklı kompozit malzemelerin üretilmesi ve bazı teknik özelliklerinin belirlenmesi. Anadolu Tarım Bilimleri Dergisi, 30(1), 43-50. https://doi.org/10.7161/anajas.2015.30.1.43-50
AMA Engin K, Koyuncu T, Lüle F. Farklı kompozit malzemelerin üretilmesi ve bazı teknik özelliklerinin belirlenmesi. ANAJAS. Şubat 2015;30(1):43-50. doi:10.7161/anajas.2015.30.1.43-50
Chicago Engin, Kaan, Turhan Koyuncu, ve Fuat Lüle. “Farklı Kompozit Malzemelerin üretilmesi Ve Bazı Teknik özelliklerinin Belirlenmesi”. Anadolu Tarım Bilimleri Dergisi 30, sy. 1 (Şubat 2015): 43-50. https://doi.org/10.7161/anajas.2015.30.1.43-50.
EndNote Engin K, Koyuncu T, Lüle F (01 Şubat 2015) Farklı kompozit malzemelerin üretilmesi ve bazı teknik özelliklerinin belirlenmesi. Anadolu Tarım Bilimleri Dergisi 30 1 43–50.
IEEE K. Engin, T. Koyuncu, ve F. Lüle, “Farklı kompozit malzemelerin üretilmesi ve bazı teknik özelliklerinin belirlenmesi”, ANAJAS, c. 30, sy. 1, ss. 43–50, 2015, doi: 10.7161/anajas.2015.30.1.43-50.
ISNAD Engin, Kaan vd. “Farklı Kompozit Malzemelerin üretilmesi Ve Bazı Teknik özelliklerinin Belirlenmesi”. Anadolu Tarım Bilimleri Dergisi 30/1 (Şubat 2015), 43-50. https://doi.org/10.7161/anajas.2015.30.1.43-50.
JAMA Engin K, Koyuncu T, Lüle F. Farklı kompozit malzemelerin üretilmesi ve bazı teknik özelliklerinin belirlenmesi. ANAJAS. 2015;30:43–50.
MLA Engin, Kaan vd. “Farklı Kompozit Malzemelerin üretilmesi Ve Bazı Teknik özelliklerinin Belirlenmesi”. Anadolu Tarım Bilimleri Dergisi, c. 30, sy. 1, 2015, ss. 43-50, doi:10.7161/anajas.2015.30.1.43-50.
Vancouver Engin K, Koyuncu T, Lüle F. Farklı kompozit malzemelerin üretilmesi ve bazı teknik özelliklerinin belirlenmesi. ANAJAS. 2015;30(1):43-50.
Online ISSN: 1308-8769