Araştırma Makalesi
BibTex RIS Kaynak Göster

Heterosis and heritability analyses for plant yield and some quality traits in F1 and F2 generations of maize

Yıl 2017, Cilt: 32 Sayı: 2, 237 - 243, 20.06.2017
https://doi.org/10.7161/omuanajas.321084

Öz

This study was conducted to
analyze the genetic effects for grain yield and some important kernel quality
traits in maize. Eight parental lines and their six hybrids were used as plant
material. Field experiments to evaluate plant material were carried out in two
locations (Çanakkale and Bursa) in 2013. 
The observed traits were single plant yield, protein content and oil
content. Additive, dominance and additive × additive models were utilized to
analyze the data. Variance component estimations showed that single plant yield
was under the control of dominance type gene action; while protein and oil
content were controlled by additive type gene action. High values (>60%) of
broad (H2) and narrow sense (h2) heritabilities were
observed for protein and oil content. The mean of F1 generation for
single plant yield and oil content were higher than the mean of F2
generation for these traits. Most of hybrids had positive mid parent heterosis
(Hmp) and better parent heterosis (Hbp) for single plant yield, while they had
negative heterosis values for protein content. Except for one cross (A680×IHO),
all of crosses had positive Hmp values for oil content.

Kaynakça

  • Chen, G.B., Zhu, J., 2003. Software for the classical quantitative genetics. Institute of Bioinformatics, Zhejiang University, Hangzhou, China. URL: http://ibi.zju.edu.cn/software/qga/index.htm.
  • Crow, J.F., 1952. Dominance and overdominance. In: Heterosis J. W. Gowen (ed.). Iowa State College Press, 529 p.
  • Dudley, J.W., 1977. Seventy-six generations of selection for oil and protein percentage in maize. In: International Conference on Quantitative Genetics, 459-473 pp.
  • Falconer, D.S., Mackay, T.F.C., 1996. Introduction to quantitative genetics. 4th ed. Longman, Essex, England. 361p
  • Flachenecker, C., Frisch, M., Falke, K.C., Melchinger, A.E., 2006. Genetic drift and selection effects of modified recurrent full-sib selection programs in two F2 populations of European flint maize. Theorotical Applied Genetics, 113:1113-1120.
  • Hussain, M., Kiani, T.T., Shah, K.N., Ghafoor, A., Rabbani, A., 2015. Gene action studies for protein quality traits in Zea mays L. under normal and drought conditions. Pakistan Journal of Botany, 47(1): 57-61.
  • Joshi, S.K., Sharma, S.N., Singhania, D.L., 2004. Combining ability in the F1 and F2 generations of diallel cross in hexaploid wheat (Triticum aestivum L. em. Thell). Hereditas, 141(2): 115-121.
  • Ma, Y.N., Wang, R.G., Wu, C., Shi, Y.W., Wang, Z.H., Xie, S.D., Zhou, S.P., Xu, H.M., Ren, X.L. 2012. Developmental analysis on genetic behavior of quality traits of flue-cured tobacco (Nicotiana tabacum) in multiple environments. International Journal of Agriculture and Biology, 14(3): 345-352.
  • Melchinger, A.E., Geiger, H.H., Schnell, F.W., 1986. Epistasis in maize (Zea mays L.). 2. Genetic effects in crosses among early flint and dent inbred lines determined by three methods. Theoretical Applied Genetics, 72(2):231-239.
  • Ryder, P., McKeown, P.C., Fort, A., Spillane, C., 2014. Epigenetics and heterosis in crop plants. Springer International Publishing, 147p
  • Schnell, F.W., Cockerham, C.C., 1992. Multiplicative vs. arbitrary gene action in heterosis. Genetics, 131(2): 461-469.
  • Shahid, M.Q., Hai-Ming, X., Shun-Quan, L., Zhi-Xioang, C., Naeem, M., Ya-Juan, L., Ziang-dong L., 2012. Genetic analysis and hybrid vigor study of grain yield and other quantitative traits in autotetraploid rice. Pakistan Journal of Botany, 44(1): 237-246.
  • Shull, G.H., 1908. The composition of a field of maize. Journal of Heredity, 4(1): 296-301.
  • Smith, O.S., 1986. Covariance between line per se and testcross performance. Crop Science, 26:540-543.
  • Xing, N., Fan, C., Zhou, Y., 2014. Parental selection of hybrid breeding based on maternal and paternal inheritance of traits in rapeseed (Brassica napus L.). PLoS ONE, 9(7): e103165.
  • Xu, Z.C., Zhu, J., 1999. An approach for predicting heterosis based on additive, dominance and additive×additive model with environment interaction. Heredity, 82: 510-517.
  • Yao, J., Ma H., Yang, X., Zhou, M., Yang, D., 2014. Genetic analysis of the grain protein content in soft red winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 19(2): 246-251.
  • Zhu, J., Weir, B.S., 1996. Diallel analysis for sex-linked and maternal effects. Theoretical Applied Genetics, 92: 1-9.

Mısırın F1 ve F2 nesillerinde bitki verimi ve bazı kalite özellikleri için heritabilite ve heterosis analizleri

Yıl 2017, Cilt: 32 Sayı: 2, 237 - 243, 20.06.2017
https://doi.org/10.7161/omuanajas.321084

Öz

Bu çalışma mısırda
bazı önemli tane kalite özellikleri ile tane veriminin genetik analizlerini
yapmak amacıyla yürütülmüştür. Çalışmada sekiz ebeveyn hat ve bunlara ait 6
adet hibrit, materyal olarak kullanılmıştır. Tarla denemeleri 2013 yılında iki
ayrı lokasyonda (Çanakkale ve Bursa) yürütülmüştür. Gözlemlenen özellikler tek
bitki verimi, protein oranı ve yağ oranıdır. Verilerin analizinde eklemeli,
dominans ve eklemeli × eklemeli modeller kullanılmıştır. Varyans bileşen
analizleri, tek bitki veriminin dominans gen etkilerinin, protein ve yağ
oranlarının ise eklemeli genlerin kontrolü altında olduğunu göstermiştir.
Protein ve yağ oranı için geniş (H2) ve dar anlamda (h2)
kalıtım dereceleri yüksek (>%60) bulunmuştur. Tek bitki verimi ve yağ oranı
için F1 neslinin ortalaması F2 neslinden daha yüksek
bulunmuştur. Hibritlerin büyük kısmı tek bitki verimi için anaç ortalamalarına
(Hmp) ve üstün anaca (Hbp) göre pozitif heterosis gösterir iken, protein oranı
için negatif heterosise sahip olmuşlardır. Bir melez (A680×IHO) dışında, bütün
melezlerin Hmp değerleri pozitif bulunmuştur.

Kaynakça

  • Chen, G.B., Zhu, J., 2003. Software for the classical quantitative genetics. Institute of Bioinformatics, Zhejiang University, Hangzhou, China. URL: http://ibi.zju.edu.cn/software/qga/index.htm.
  • Crow, J.F., 1952. Dominance and overdominance. In: Heterosis J. W. Gowen (ed.). Iowa State College Press, 529 p.
  • Dudley, J.W., 1977. Seventy-six generations of selection for oil and protein percentage in maize. In: International Conference on Quantitative Genetics, 459-473 pp.
  • Falconer, D.S., Mackay, T.F.C., 1996. Introduction to quantitative genetics. 4th ed. Longman, Essex, England. 361p
  • Flachenecker, C., Frisch, M., Falke, K.C., Melchinger, A.E., 2006. Genetic drift and selection effects of modified recurrent full-sib selection programs in two F2 populations of European flint maize. Theorotical Applied Genetics, 113:1113-1120.
  • Hussain, M., Kiani, T.T., Shah, K.N., Ghafoor, A., Rabbani, A., 2015. Gene action studies for protein quality traits in Zea mays L. under normal and drought conditions. Pakistan Journal of Botany, 47(1): 57-61.
  • Joshi, S.K., Sharma, S.N., Singhania, D.L., 2004. Combining ability in the F1 and F2 generations of diallel cross in hexaploid wheat (Triticum aestivum L. em. Thell). Hereditas, 141(2): 115-121.
  • Ma, Y.N., Wang, R.G., Wu, C., Shi, Y.W., Wang, Z.H., Xie, S.D., Zhou, S.P., Xu, H.M., Ren, X.L. 2012. Developmental analysis on genetic behavior of quality traits of flue-cured tobacco (Nicotiana tabacum) in multiple environments. International Journal of Agriculture and Biology, 14(3): 345-352.
  • Melchinger, A.E., Geiger, H.H., Schnell, F.W., 1986. Epistasis in maize (Zea mays L.). 2. Genetic effects in crosses among early flint and dent inbred lines determined by three methods. Theoretical Applied Genetics, 72(2):231-239.
  • Ryder, P., McKeown, P.C., Fort, A., Spillane, C., 2014. Epigenetics and heterosis in crop plants. Springer International Publishing, 147p
  • Schnell, F.W., Cockerham, C.C., 1992. Multiplicative vs. arbitrary gene action in heterosis. Genetics, 131(2): 461-469.
  • Shahid, M.Q., Hai-Ming, X., Shun-Quan, L., Zhi-Xioang, C., Naeem, M., Ya-Juan, L., Ziang-dong L., 2012. Genetic analysis and hybrid vigor study of grain yield and other quantitative traits in autotetraploid rice. Pakistan Journal of Botany, 44(1): 237-246.
  • Shull, G.H., 1908. The composition of a field of maize. Journal of Heredity, 4(1): 296-301.
  • Smith, O.S., 1986. Covariance between line per se and testcross performance. Crop Science, 26:540-543.
  • Xing, N., Fan, C., Zhou, Y., 2014. Parental selection of hybrid breeding based on maternal and paternal inheritance of traits in rapeseed (Brassica napus L.). PLoS ONE, 9(7): e103165.
  • Xu, Z.C., Zhu, J., 1999. An approach for predicting heterosis based on additive, dominance and additive×additive model with environment interaction. Heredity, 82: 510-517.
  • Yao, J., Ma H., Yang, X., Zhou, M., Yang, D., 2014. Genetic analysis of the grain protein content in soft red winter wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 19(2): 246-251.
  • Zhu, J., Weir, B.S., 1996. Diallel analysis for sex-linked and maternal effects. Theoretical Applied Genetics, 92: 1-9.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Bölüm Tarla Bitkileri
Yazarlar

Fatih Kahrıman

Cem Ömer Egesel

Yayımlanma Tarihi 20 Haziran 2017
Kabul Tarihi 22 Kasım 2016
Yayımlandığı Sayı Yıl 2017 Cilt: 32 Sayı: 2

Kaynak Göster

APA Kahrıman, F., & Egesel, C. Ö. (2017). Mısırın F1 ve F2 nesillerinde bitki verimi ve bazı kalite özellikleri için heritabilite ve heterosis analizleri. Anadolu Tarım Bilimleri Dergisi, 32(2), 237-243. https://doi.org/10.7161/omuanajas.321084
Online ISSN: 1308-8769