Araştırma Makalesi
BibTex RIS Kaynak Göster

Dışsal sentetik inositol türevi (Allo-İnositol) uygulamasının Capsicum chinense bitkisinin tuz (NaCl) toleransı üzerine etkisi

Yıl 2019, Cilt: 34 Sayı: 3, 319 - 326, 15.10.2019
https://doi.org/10.7161/omuanajas.556100

Öz




Bu çalışmada tuz stresine maruz bırakılan Capsicum chinense (biber) bitkisinde,
dışsal olarak yapraklardan uygulanan sentetik siklitol türevi allo-inositol’ün
tuz tolerans mekanizmasında oynadığı rollerin fizyolojik ve biyokimyasal
yöntemlerle araştırılması amaçlanmıştır. Bu kapsamda tuz stresine maruz
bırakılan bitkiler (150 µM NaCl) gerek kontrol bitkileri gerekse siklitol
uygulanmış stres gruplarıyla kıyaslanarak; yaprak su potansiyelleri,
antioksidan enzim aktiviteleri, lipid peroksidasyonları (MDA), hidrojen
peroksit (H2O2), prolin ve kalsiyum miktarları
belirlenmiştir. Bulgularımıza göre stres gruplarında allo-inositol uygulaması
yaprak su potansiyelini, prolin miktarını, kalsiyum içeriğini ve antioksidan
enzim aktivitelerini arttırırken, MDA ve H2O2 içeriğini
ise azaltmıştır. Bu sonuçlara göre; dışsal olarak uygulanan sentetik
allo-inositol’ün biber bitkisinde tuz stresinin olumsuz etkilerini
hafifletebildiği söylenebilir.


Kaynakça

  • AbdElgawad, H., Zinta, G., Hegab, M.M., Pandey, R., Asard, H., Abuelsoud, W., 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs Front. Plant Sci. 7: 276
  • Aebi, H., 1974. Catalase. In: Bergmeyer, H.U., Ed., Methods of Enzymatic Analysis, Verlag Chemie/Academic Press Inc., Weinheim/NewYork, 673-680.
  • Ahmad, P., 2010. Growth and antioxidant responses in mustard (Brassica napus L.) plants subjected to combined effect of gibberellic acid and salinity. Archieves Agronomy and Soil Science, 56: 575-588.
  • Alpaslan, M., Gunes, A., Taban, S., Erda, I., Tarakcioglu, C., 1998. Variations in calcium, phosphorous, iron, copper, zinc, and manganese contents of wheat and rice varieties under salt stress, Turk. J. Agric. For. 22: 227–233.
  • Ashraf, M., Arfan, M., Shahbaz, M., Ahmad, A., Jamil, A., 2002. Gas exchange characteristics and water relations in some elite okra cultivars under water deficit.. Photosynthetica. 40(4): 615-620.
  • Avcı, M.A., 2015. Tuzlu koşullarda yetiştirilen mısır bitkisine diüre ve buğday bitkisine mannitol uygulamasının bitki fizyolojisine ve beslenmesine etkileri. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Urfa.
  • Bartoli, C.G., Simontacchi, M., Tambussi, E., Beltrano, J., Montaldi, E., Puntarulo, S., 1999. Drought and watering-dependent oxidative stres: effect on antioxidant content in Triticum aestivum L. Leaves. Journal of Experimental Botany. 50: 375-383.
  • Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and soil. 39(1): 205-207.
  • Beyer, W.F., Fridowich, I., 1987. Assaying for superokside dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry. 161: 559-566.
  • Bieleski, R.L., 1994. Pinitol is a major carbohydrate in leaves of some coastal plants indigenous to New Zealand. New Zealand Journal of Botany. 32(1): 73–78.
  • Bonnet, M., Camares, O., Veisserie, P., 2000. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a flurescence and antioxidant enzyme activites of ryegrass. Journal Experimental Botany. 51: 945-953.
  • Bradford, M.M., 1976. A rapid and sensitice method for the quantification of microgram quantities of protein, utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  • Calberg, I., Mannervik, B., 1985. Glutathion Reductase: In Methods in Enzymology. Academic Press, 113: 484-490.
  • Cicerali, I.N., 2004. Effect of salt stress on antioxidant defense systems of sensitive and resistant cultivars of lentil (Lens culinaris M.). Doktora Tezi, Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Çelik, Ö., Atak, Ç., 2012. The effect of salt stress on antioxidative enzymes and proline. Turk. J. Biol. 36: 339-356.
  • Çevik, S., Akpınar, G., Yıldızlı, A., Kasap, M., Karaosmanoğlu, K., Ünyayar, S., 2019. Comparative physiological and leaf proteome analysis between drought-tolerant chickpea Cicer reticulatum and drought-sensitive chickpea C. arietinum. Journal of bioscience. 44(20): 1-13.
  • Çevik, S., Ünyayar, S., 2015. The Effects of Exogenous Application of Ascorbate and Glutathione on Antioxidant System in Cultivated Cicer arietinum and Wild Type C. reticulatum under Drought Stress. SDU Journal of Natural and Applied Sciences. 19: 1-13.
  • Çevik, S., Yıldızlı, A., Yandım, G., Göksu, H., Gultekin, M.S., Değer, A.G., Celik, A., Kuş, N.Ş., Ünyayar, S., 2014. Some synthetic cyclitol derivatives alleviate the effect of water deficit in cultivated and wild-type chickpea species. Journal of plant physiology. 171(10): 807-816.
  • Çömlekçioğlu, N., Arıkan, S., 2017. Fizyolojik stres ve eksojen poliaminlerin Isatis tinctoria L. yapraklarındaki indigo miktarı ve fide gelişimi üzerine etkisi. Mediterranean Agrıcultural Sciences. 30(3): 261-267.
  • Çulha, Ş., 2011. Tuz Stresinin Aspir (Carthamus tinctorius L.) Çeşitlerindeki Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkisinin İncelenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Deveci, M., Tuğrul, B., 2017. Ispanakta tuz stresinin yaprak fizyolojik özelliklerine etkisi. Akademik Ziraat Dergisi. 6: 89-98.
  • Eisa, S., Hussin, S., Geissler, N., Koyro H.W., 2012. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinea Wild.) as a potential cash crop halophyte. Australian Journal of Crop Science. 6(2): 357-368.
  • Fazeli, F., Ghorbanlı, M., Niknam, V., 2007. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantarum. 51: 98-103.
  • Foyer, C.H., Lelandais, M., Kunert, K.J., 1994. Photooxidative stress in plants. Phsiology Plantarum, 92(4): 696-717.
  • Gonzalez, K., Erdei L., Lips, H., 2002. The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Science. 162(6): 923-930.
  • Jalali-e-Emam, S.M.S., Alizadeh, B., Zaefizadeh, M., Zakarya, R.A., Khayatnezhad, M., 2011. Superoxide Dismutase (SOD) Activity in Nacl Stress in Salt-Sensitive and Salt-Tolerance Genotypes of Colza (Brassica napus L.). Middle-East Journal of Scientific Research. 7(1): 7-11.
  • Kaya, A., İnan, M., 2017. Tuz (NaCl) Stresine Maruz Kalan Reyhan (Ocimum basilicum L.) Bitkisinde Bazı Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Salisilik Asidin Etkileri. Harran Tarım ve Gıda Bilimleri Dergisi. 21(3): 332-342.
  • Kıran, S., Özkay, F., Kuşvuran, Ş., Ellialtıoğlu, Ş.Ş., 2014. Tuz stresine tolerans seviyesi farklı domates genotiplerinin kuraklık stresi koşullarında bazı özelliklerinde meydana gelen değişimler. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi. 31(3): 41-48.
  • Lhout, F.A., Zunzunegui, M., Barradas, M.C.D., Tirado, R., Clavijo, A., Novo, F.G., 2001. Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant and Soil, 230: 175-183.
  • Lopez, H., Marco, A., Ulery, A.P., Zohrab, S., Picchioni, G., Flynn, R.P., 2011. Response of chili pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: I Growth and yield. Tropical and Subtropical Agroecosystems. 14(1): 137-147.
  • Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P.C., Sohrabi, Y., Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. AJCS. 4(8): 580-585.
  • Merchant, A., Tausz, M., Arndt, S.K., Adams, M.A., 2006. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell & Environment, 29(11): 2017–2029.
  • Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R.V., Aparicio-Tejo, P., 1994. Drought induces oxidative stres in pea plants. Planta. 194: 346-352. Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 95: 351- 358.
  • Özkorkmaz, F., Yılmaz, N., 2017. Farklı Tuz Konsantrasyonlarının Fasulye (Phaseolus vulgaris L.) ve Börülcede (Vigna unguiculata L.) Çimlenme Üzerine Etkilerinin Belirlenmesi. Ordu Üniversitesi Bilim ve Teknoloji Dergisi. 7(2): 196-200.
  • Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., Khan, Y. J., Chauhan, D. K., Thakur, A.K., 2017. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: A comprehensive review. 3 Biotech. 7(4): 239.
  • Penella, C., Landi, M., Guidi L., Nebauer, S.G., Pellegrini, E., San Bautista, A., Remorini, D., Nali, C., Lopez-Galarza S., Calatayud, A., 2016. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology. 193: 1-11.
  • Sies, H., 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11: 613–619.
  • Silva, J.R., Chaves, T.P., da Silva, A.R., Barbosa, L.D.F., Costa, J.F., Ramos-Sobrinho, R., Teixeira, R.R., Silva, S.J., Lima, G.S., Assunção, I.P., 2017. Molecular and morpho-cultural characterization of Colletotrichum spp. associated with anthracnose on Capsicum spp. in northeastern Brazil. Tropical Plant Pathology. 42(4): 315-319.
  • Solmaz, I., Sarı, N., Dasgan Y., Aktaş, H., Yetişir, H., Ünlü, H., 2011. The effect of salinity on stomata and leaf characteristics of dihaploid melon lines and their hybrids. Journal of Food, Agriculture and Environment. 9(3-4): 172-176.
  • Sreenivasulu, N., Grimm, B., Wobus, U., Weschke, W., 2000. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedling of fox-tail millet (Setaria italica). Physiologia Plantarum. 109(4): 435-442.
  • Szabados, L., Savoure, A., 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15(2): 89-97.
  • Ünyayar, S., Keleş, Y., Çekiç, F.Ö., 2005. The antioxidative response of two tomato species with different drought tolerances as a result of drought and cadmium stress combinations. Plant Soil Environment. 51: 57-64.
  • Ünyayar, S., Keleş, Y., Ünal, E., 2004. Proline and ABA levels in two sunflower genotypes subjected to water stress. Bulg J Plant Physiol. 30(3-4): 34-47.
  • Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Science. 151: 59–66.
  • Vendruscolo, E.C.G., Schuster, I., Pileggi, M., Scapimd, C.A., Molinarie, H.B.C., Marure, C.J., Vieira, L.G.E., 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology. 164: 1367-1376.
  • Yu, Y., Assmann, S.M., 2016. The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants. Plant Signal. Behav. 11: e1085275.
  • Zarcinas, B.A., Cartwright, B., Spouncer, L.R., 1987. Nitric acid digestion and multi‐element analysis of plant material by inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis. 18(1): 131-146.
  • ZhongQun, H., ChaoXin H., ZhiBin Z., ZhiRong Z., HuaiSong W., 2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces. 59: 128–133.

The effect of exogenous application of Synthetic inositol derivative (Allo-Inositol) on salt tolerance of Capsicum chinense

Yıl 2019, Cilt: 34 Sayı: 3, 319 - 326, 15.10.2019
https://doi.org/10.7161/omuanajas.556100

Öz

In
this study, it is aimed to investigate the role of synthetic cyclitol
derivative allo-inositol on salt tolerance mechanism in the Capsicum chinense (pepper) which is
exposed to salt stress by physiological and biochemical methods. Plants
thatexposed to salt stress (150
µM NaCl) compared to both control plants and cyclitol applied stress
groups; leaf water potentials, antioxidant enzyme activities, lipid
peroxidation (MDA), hydrogen peroxide (H2O2), proline and
calcium levels were determined. According to our findings, application of
allo-inositol in stressed groups increased leaf water potential, proline
amount, calcium content, and antioxidant enzyme activities while decreasing MDA
and H2O2 content. According to these results; it can be
said that the synthetic allo-inositol which exogenously applied to pepper plant
may alleviate the negative effects of salt stress.

Kaynakça

  • AbdElgawad, H., Zinta, G., Hegab, M.M., Pandey, R., Asard, H., Abuelsoud, W., 2016. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs Front. Plant Sci. 7: 276
  • Aebi, H., 1974. Catalase. In: Bergmeyer, H.U., Ed., Methods of Enzymatic Analysis, Verlag Chemie/Academic Press Inc., Weinheim/NewYork, 673-680.
  • Ahmad, P., 2010. Growth and antioxidant responses in mustard (Brassica napus L.) plants subjected to combined effect of gibberellic acid and salinity. Archieves Agronomy and Soil Science, 56: 575-588.
  • Alpaslan, M., Gunes, A., Taban, S., Erda, I., Tarakcioglu, C., 1998. Variations in calcium, phosphorous, iron, copper, zinc, and manganese contents of wheat and rice varieties under salt stress, Turk. J. Agric. For. 22: 227–233.
  • Ashraf, M., Arfan, M., Shahbaz, M., Ahmad, A., Jamil, A., 2002. Gas exchange characteristics and water relations in some elite okra cultivars under water deficit.. Photosynthetica. 40(4): 615-620.
  • Avcı, M.A., 2015. Tuzlu koşullarda yetiştirilen mısır bitkisine diüre ve buğday bitkisine mannitol uygulamasının bitki fizyolojisine ve beslenmesine etkileri. Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü, Urfa.
  • Bartoli, C.G., Simontacchi, M., Tambussi, E., Beltrano, J., Montaldi, E., Puntarulo, S., 1999. Drought and watering-dependent oxidative stres: effect on antioxidant content in Triticum aestivum L. Leaves. Journal of Experimental Botany. 50: 375-383.
  • Bates, L.S., Waldren, R.P., Teare, I.D., 1973. Rapid determination of free proline for water-stress studies. Plant and soil. 39(1): 205-207.
  • Beyer, W.F., Fridowich, I., 1987. Assaying for superokside dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry. 161: 559-566.
  • Bieleski, R.L., 1994. Pinitol is a major carbohydrate in leaves of some coastal plants indigenous to New Zealand. New Zealand Journal of Botany. 32(1): 73–78.
  • Bonnet, M., Camares, O., Veisserie, P., 2000. Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a flurescence and antioxidant enzyme activites of ryegrass. Journal Experimental Botany. 51: 945-953.
  • Bradford, M.M., 1976. A rapid and sensitice method for the quantification of microgram quantities of protein, utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  • Calberg, I., Mannervik, B., 1985. Glutathion Reductase: In Methods in Enzymology. Academic Press, 113: 484-490.
  • Cicerali, I.N., 2004. Effect of salt stress on antioxidant defense systems of sensitive and resistant cultivars of lentil (Lens culinaris M.). Doktora Tezi, Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Çelik, Ö., Atak, Ç., 2012. The effect of salt stress on antioxidative enzymes and proline. Turk. J. Biol. 36: 339-356.
  • Çevik, S., Akpınar, G., Yıldızlı, A., Kasap, M., Karaosmanoğlu, K., Ünyayar, S., 2019. Comparative physiological and leaf proteome analysis between drought-tolerant chickpea Cicer reticulatum and drought-sensitive chickpea C. arietinum. Journal of bioscience. 44(20): 1-13.
  • Çevik, S., Ünyayar, S., 2015. The Effects of Exogenous Application of Ascorbate and Glutathione on Antioxidant System in Cultivated Cicer arietinum and Wild Type C. reticulatum under Drought Stress. SDU Journal of Natural and Applied Sciences. 19: 1-13.
  • Çevik, S., Yıldızlı, A., Yandım, G., Göksu, H., Gultekin, M.S., Değer, A.G., Celik, A., Kuş, N.Ş., Ünyayar, S., 2014. Some synthetic cyclitol derivatives alleviate the effect of water deficit in cultivated and wild-type chickpea species. Journal of plant physiology. 171(10): 807-816.
  • Çömlekçioğlu, N., Arıkan, S., 2017. Fizyolojik stres ve eksojen poliaminlerin Isatis tinctoria L. yapraklarındaki indigo miktarı ve fide gelişimi üzerine etkisi. Mediterranean Agrıcultural Sciences. 30(3): 261-267.
  • Çulha, Ş., 2011. Tuz Stresinin Aspir (Carthamus tinctorius L.) Çeşitlerindeki Bazı Fizyolojik ve Biyokimyasal Parametreler Üzerine Etkisinin İncelenmesi. Yüksek Lisans Tezi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Deveci, M., Tuğrul, B., 2017. Ispanakta tuz stresinin yaprak fizyolojik özelliklerine etkisi. Akademik Ziraat Dergisi. 6: 89-98.
  • Eisa, S., Hussin, S., Geissler, N., Koyro H.W., 2012. Effect of NaCl salinity on water relations, photosynthesis and chemical composition of quinoa (Chenopodium quinea Wild.) as a potential cash crop halophyte. Australian Journal of Crop Science. 6(2): 357-368.
  • Fazeli, F., Ghorbanlı, M., Niknam, V., 2007. Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantarum. 51: 98-103.
  • Foyer, C.H., Lelandais, M., Kunert, K.J., 1994. Photooxidative stress in plants. Phsiology Plantarum, 92(4): 696-717.
  • Gonzalez, K., Erdei L., Lips, H., 2002. The activity of antioxidant enzymes in maize and sunflower seedlings as affected by salinity and different nitrogen sources. Plant Science. 162(6): 923-930.
  • Jalali-e-Emam, S.M.S., Alizadeh, B., Zaefizadeh, M., Zakarya, R.A., Khayatnezhad, M., 2011. Superoxide Dismutase (SOD) Activity in Nacl Stress in Salt-Sensitive and Salt-Tolerance Genotypes of Colza (Brassica napus L.). Middle-East Journal of Scientific Research. 7(1): 7-11.
  • Kaya, A., İnan, M., 2017. Tuz (NaCl) Stresine Maruz Kalan Reyhan (Ocimum basilicum L.) Bitkisinde Bazı Morfolojik, Fizyolojik ve Biyokimyasal Parametreler Üzerine Salisilik Asidin Etkileri. Harran Tarım ve Gıda Bilimleri Dergisi. 21(3): 332-342.
  • Kıran, S., Özkay, F., Kuşvuran, Ş., Ellialtıoğlu, Ş.Ş., 2014. Tuz stresine tolerans seviyesi farklı domates genotiplerinin kuraklık stresi koşullarında bazı özelliklerinde meydana gelen değişimler. Gaziosmanpaşa Üniversitesi Ziraat Fakültesi Dergisi. 31(3): 41-48.
  • Lhout, F.A., Zunzunegui, M., Barradas, M.C.D., Tirado, R., Clavijo, A., Novo, F.G., 2001. Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant and Soil, 230: 175-183.
  • Lopez, H., Marco, A., Ulery, A.P., Zohrab, S., Picchioni, G., Flynn, R.P., 2011. Response of chili pepper (Capsicum annuum L.) to salt stress and organic and inorganic nitrogen sources: I Growth and yield. Tropical and Subtropical Agroecosystems. 14(1): 137-147.
  • Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P.C., Sohrabi, Y., Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. AJCS. 4(8): 580-585.
  • Merchant, A., Tausz, M., Arndt, S.K., Adams, M.A., 2006. Cyclitols and carbohydrates in leaves and roots of 13 Eucalyptus species suggest contrasting physiological responses to water deficit. Plant, Cell & Environment, 29(11): 2017–2029.
  • Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klucas, R.V., Aparicio-Tejo, P., 1994. Drought induces oxidative stres in pea plants. Planta. 194: 346-352. Ohkawa, H., Ohishi, N., Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 95: 351- 358.
  • Özkorkmaz, F., Yılmaz, N., 2017. Farklı Tuz Konsantrasyonlarının Fasulye (Phaseolus vulgaris L.) ve Börülcede (Vigna unguiculata L.) Çimlenme Üzerine Etkilerinin Belirlenmesi. Ordu Üniversitesi Bilim ve Teknoloji Dergisi. 7(2): 196-200.
  • Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., Khan, Y. J., Chauhan, D. K., Thakur, A.K., 2017. Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: A comprehensive review. 3 Biotech. 7(4): 239.
  • Penella, C., Landi, M., Guidi L., Nebauer, S.G., Pellegrini, E., San Bautista, A., Remorini, D., Nali, C., Lopez-Galarza S., Calatayud, A., 2016. Salt-tolerant rootstock increases yield of pepper under salinity through maintenance of photosynthetic performance and sinks strength. Journal of Plant Physiology. 193: 1-11.
  • Sies, H., 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 11: 613–619.
  • Silva, J.R., Chaves, T.P., da Silva, A.R., Barbosa, L.D.F., Costa, J.F., Ramos-Sobrinho, R., Teixeira, R.R., Silva, S.J., Lima, G.S., Assunção, I.P., 2017. Molecular and morpho-cultural characterization of Colletotrichum spp. associated with anthracnose on Capsicum spp. in northeastern Brazil. Tropical Plant Pathology. 42(4): 315-319.
  • Solmaz, I., Sarı, N., Dasgan Y., Aktaş, H., Yetişir, H., Ünlü, H., 2011. The effect of salinity on stomata and leaf characteristics of dihaploid melon lines and their hybrids. Journal of Food, Agriculture and Environment. 9(3-4): 172-176.
  • Sreenivasulu, N., Grimm, B., Wobus, U., Weschke, W., 2000. Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedling of fox-tail millet (Setaria italica). Physiologia Plantarum. 109(4): 435-442.
  • Szabados, L., Savoure, A., 2010. Proline: a multifunctional amino acid. Trends Plant Sci. 15(2): 89-97.
  • Ünyayar, S., Keleş, Y., Çekiç, F.Ö., 2005. The antioxidative response of two tomato species with different drought tolerances as a result of drought and cadmium stress combinations. Plant Soil Environment. 51: 57-64.
  • Ünyayar, S., Keleş, Y., Ünal, E., 2004. Proline and ABA levels in two sunflower genotypes subjected to water stress. Bulg J Plant Physiol. 30(3-4): 34-47.
  • Velikova, V., Yordanov, I., Edreva, A., 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants, protective role of exogenous polyamines. Plant Science. 151: 59–66.
  • Vendruscolo, E.C.G., Schuster, I., Pileggi, M., Scapimd, C.A., Molinarie, H.B.C., Marure, C.J., Vieira, L.G.E., 2007. Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Journal of Plant Physiology. 164: 1367-1376.
  • Yu, Y., Assmann, S.M., 2016. The effect of NaCl on stomatal opening in Arabidopsis wild type and agb1 heterotrimeric G-protein mutant plants. Plant Signal. Behav. 11: e1085275.
  • Zarcinas, B.A., Cartwright, B., Spouncer, L.R., 1987. Nitric acid digestion and multi‐element analysis of plant material by inductively coupled plasma spectrometry. Communications in Soil Science and Plant Analysis. 18(1): 131-146.
  • ZhongQun, H., ChaoXin H., ZhiBin Z., ZhiRong Z., HuaiSong W., 2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces. 59: 128–133.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Tarımsal Yapılar ve Sulama
Yazarlar

Gizem Özkoku Bu kişi benim

Sertan Çevik

Serpil Ünyanar Bu kişi benim

Yayımlanma Tarihi 15 Ekim 2019
Kabul Tarihi 31 Temmuz 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 34 Sayı: 3

Kaynak Göster

APA Özkoku, G., Çevik, S., & Ünyanar, S. (2019). Dışsal sentetik inositol türevi (Allo-İnositol) uygulamasının Capsicum chinense bitkisinin tuz (NaCl) toleransı üzerine etkisi. Anadolu Tarım Bilimleri Dergisi, 34(3), 319-326. https://doi.org/10.7161/omuanajas.556100
AMA Özkoku G, Çevik S, Ünyanar S. Dışsal sentetik inositol türevi (Allo-İnositol) uygulamasının Capsicum chinense bitkisinin tuz (NaCl) toleransı üzerine etkisi. ANAJAS. Ekim 2019;34(3):319-326. doi:10.7161/omuanajas.556100
Chicago Özkoku, Gizem, Sertan Çevik, ve Serpil Ünyanar. “Dışsal Sentetik Inositol türevi (Allo-İnositol) uygulamasının Capsicum Chinense Bitkisinin Tuz (NaCl) Toleransı üzerine Etkisi”. Anadolu Tarım Bilimleri Dergisi 34, sy. 3 (Ekim 2019): 319-26. https://doi.org/10.7161/omuanajas.556100.
EndNote Özkoku G, Çevik S, Ünyanar S (01 Ekim 2019) Dışsal sentetik inositol türevi (Allo-İnositol) uygulamasının Capsicum chinense bitkisinin tuz (NaCl) toleransı üzerine etkisi. Anadolu Tarım Bilimleri Dergisi 34 3 319–326.
IEEE G. Özkoku, S. Çevik, ve S. Ünyanar, “Dışsal sentetik inositol türevi (Allo-İnositol) uygulamasının Capsicum chinense bitkisinin tuz (NaCl) toleransı üzerine etkisi”, ANAJAS, c. 34, sy. 3, ss. 319–326, 2019, doi: 10.7161/omuanajas.556100.
ISNAD Özkoku, Gizem vd. “Dışsal Sentetik Inositol türevi (Allo-İnositol) uygulamasının Capsicum Chinense Bitkisinin Tuz (NaCl) Toleransı üzerine Etkisi”. Anadolu Tarım Bilimleri Dergisi 34/3 (Ekim 2019), 319-326. https://doi.org/10.7161/omuanajas.556100.
JAMA Özkoku G, Çevik S, Ünyanar S. Dışsal sentetik inositol türevi (Allo-İnositol) uygulamasının Capsicum chinense bitkisinin tuz (NaCl) toleransı üzerine etkisi. ANAJAS. 2019;34:319–326.
MLA Özkoku, Gizem vd. “Dışsal Sentetik Inositol türevi (Allo-İnositol) uygulamasının Capsicum Chinense Bitkisinin Tuz (NaCl) Toleransı üzerine Etkisi”. Anadolu Tarım Bilimleri Dergisi, c. 34, sy. 3, 2019, ss. 319-26, doi:10.7161/omuanajas.556100.
Vancouver Özkoku G, Çevik S, Ünyanar S. Dışsal sentetik inositol türevi (Allo-İnositol) uygulamasının Capsicum chinense bitkisinin tuz (NaCl) toleransı üzerine etkisi. ANAJAS. 2019;34(3):319-26.
Online ISSN: 1308-8769