Araştırma Makalesi
BibTex RIS Kaynak Göster

Determining the genetic and agronomic variations in lines from Samsun tobacco growing areas

Yıl 2022, Cilt: 37 Sayı: 3, 617 - 636, 31.10.2022
https://doi.org/10.7161/omuanajas.1089641

Öz

Tobaccos grown in Samsun are known all over the world. Samsun tobaccos are grown using nonregistered populations traditionally maintained by local farmers. The present study was conducted to determine the genetic and agronomic variations in Samsun tobaccos. Fifty-eight lines were collected from Samsun in tobacco growing area. These lines were analyzed using eighteen SSR markers. Polymorphic information content (PIC) values of markers ranged between 0.0 and 0.702. Forty-two alleles were obtained from 18 SSR markers. The average number of alleles per SSR locus was 2.33. Forty-eight lines were different for at least one SSR locus, indicating a high level of variation. The forty-eight lines were evaluated in two field trials along with local varieties Nail and Canik for agronomic characteristics such as plant height, number of leaves, leaf width, leaf length, leaf yield, grade index, leaf sugar, and nicotine contents. A high level of variation was also evident for agronomic characters. Lines No: 2, 11, 13, 21, 28 and 41 were notable for their superior agronomic characteristics. Some of these lines could be directly registered as new cultivars, but they should be further evaluated in future field trials in multiple environments. These lines could also be used as parents for the development of new cultivars.

Kaynakça

  • Acquaah, G., 2012. Principles of plant genetics and breeding. Chapter 11. Plant genetic resources 2.ed. Blackwell, Maryland.
  • Aleksoska, A.K., Arsov, Z., Miceska, G., Gveroska, B., Aleksoski, J., Bebic, Z., 2014. Diallel crosses trial- the basis for detection of resistance to diseases in tobacco. Tobacco, 64: 3–12.
  • An, Y., Fu, Y., Luo, S., He, X., Li, H., Nie, H., Jian, F., Zhongjian, H., Li, Y., 2013. Quality analysis of Samsun oriental tobacco leaves in various ecological regions. Chinese Tobacco Science, 2013(3): 94–99.
  • Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., Sorrells, M.E., 1993. Optimizing parental selection for genetic linkage maps. Genome, 36:181–186.
  • Bindler, G., Hoeven R., Gunduz, I., Plieske, J., Ganal, M., Rossi, L., Gadani, F., Donini, P., 2007. A microsatellite marker based linkage map of tobacco. Theoretical and Applied Genetics, 114(2): 341–349.
  • Bindler, G., Plieske, J., Bakaher, N., Gunduz, I., Ivanov, N., Der Hoeven, R.V., Ganal, M., Donini, P., 2011. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theoretical and Applied Genetics, 123(2): 219–230.
  • Cai, C., Yang, Y., Cheng, L., Tong, C., Feng, J., 2015. Development and assessment of EST SSR marker for the genetic diversity among tobaccos (Nicotiana tabacum L.). Russian Journal of Genetics, 51: 591–600.
  • Camas, N., 1998. The analysis of the inheritence ability of some quantitative characters using line x tester method in tobacco (Nicotiana tabacum L.). Dissertation (unpublished) Ondokuz Mayıs University Samsun Turkey.
  • Camas, N., Caliskan, O., Odabas, M.S., Ayan, A.K., 2009a. The effects of organic originated fertilizer doses on yield and quality of Esendal tobacco cultivar. Proceeding of the Turkey VIII. Field Crops Congress; Sep 18-22 Hatay Turkey.
  • Camas, N., Karaali, H., Caliskan, O., Kurt, D., 2009b. Determination the yield and yield components of Basma tobacco cultivars and accessions under Gumushacikoy conditions. Proceeding of the Turkey VIII. Field Crops Congress Sep 18-22 Hatay Turkey.
  • Ceccarelli, S., 1994. Specific adaptation and breeding for marginal conditions. In: Breeding Fodder Crops for Marginal Conditions Springer Dordrecht.
  • Darvishzadeh, R., Mirzaei, L., Maleki, H.H., Laurentin, H., Alavi, S.R., 2013. Genetic variation in oriental tobacco (Nicotiana tabacum L.) by agro-morphological traits and simple sequence repeat markers. Revista Ciência Agronômica, 44(2): 347–355.
  • Darvishzadeh, R., Basirnia, A., Maleki, H.H., Jafari, M., 2014. Association mapping for resistance to powdery mildew in oriental tobacco (Nicotiana tabacum L.) germplasm. Iranian J Gen Plant Breed, 3(1): 21–30.
  • Davalieva, K., Maleva, I., Filipovski, K., Spiroski, O., Efremov, G.D., 2010. Genetic variability of Macedonian tobacco varieties determined by microsatellite marker analysis. Diversity 2(4): 439–449.
  • Ding, L., Xie, F., Zhao, M., Wang, S., Xie, J., Xu, G., 2007. Rapid quantification of sucrose esters in oriental tobacco by liquid chromatography‐ion trap mass spectrometry. Journal of Separation Science, 30(1): 35–41.
  • Freed, R., Eisensmith, S.P., 1986. MSTAT - Statistical Software for Agronomists. Agronomy Abstract.
  • Fricano, A., Bakaher, N., Del Corvo, M., Piffanelli, P., Donini, P., Stella, A., Ivanov, N.V., Pozzi, C., 2012. Molecular diversity population structure and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genetics ,13(18): 1–13.
  • Gholizadeh, S., Darvishzadeh, R., Mandoulakani, B.A., Bernousi, I., Alavi, S.R., Masouleh, A.K., 2012. Molecular characterization and similarity relationships among flue-cured tobacco (Nicotiana tabacum L.) genotypes using simple sequence repeat markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(2): 247–253.
  • Ganesh, C.T., Saiprasad, G.V.S., Raju, M.B., Sheshshayee, M.S., Udayakumar, M., 2014. Genetic structure in FCV tobacco population as assessed by multi-locus genotyping using SSR markers. Advances in Crop Science and Technology, 2(3): 127–135.
  • Hasebe, H., Suhara, S., 1999. The quality estimation of different tobacco types examined by headspace vapor analysis. Contributions to Tobacco Research, 18(5): 213–222.
  • Kandemir, N., Yıldırım, A., Gunduz, R., 2010. Determining the levels of genetic variation using SSR Markers in three Turkish barley materials known as Tokat. Turkish Journal of Agriculture and Forestry, 34: 17–23.
  • Keskin, A., Koprulu, T.K., Bursali, A., Ozsemir, A.C., Yavuz, K.E., Tekin, S., 2014. First record of Ixodes arboricola (Ixodida: Ixodidae) from Turkey with presence of Candidatus Rickettsia vini (Rickettsiales: Rickettsiaceae). Journal of Medical Entomology, 51(4): 864–873.
  • Kinay, A., Yilmaz, G., 2016. Effects of heterosis on agronomically important traits of oriental tobacco (Nicotiana tabacum L.) hybrids. SDU Journal of the Faculty of Agriculture, 11(1): 89–94.
  • Kinay, A., Kurt, D., 2021. Chemical content and quality of sun cured tobacco lines. Anadolu Journal of Agricultural Sciences, 36(2): 282–292.
  • Kurt, D., 2020. Stability analyses for interpreting genotype by environment interaction of selected oriental tobacco landraces. Turkish Journal of Field Crops, 25(1): 83–91.
  • Kurt, D., Yilmaz, G., Kinay, A., 2020. Effects of environmental variations on yield of oriental tobaccos. International Journal of Agriculture and Wildlife Science, 6(2): 310–324.
  • Kurt, D., 2021. Impacts of environmental variations on quality and chemical contents of oriental tobacco. Contributions to Tobacco and Nicotine Research, 30(1): 51–63.
  • Kurt, D., Ayan, A.K., 2014. Effect of the different organic fertilizer sources and doses on yield in organic tobacco (Nicotiana tabacum L.) production. Journal of the Agricultural Faculty of Gaziosmanpasa University, 31(2): 7–14.
  • Kyratzis, A.C., Nikoloudakis, N., Katsiotis, A., 2019. Genetic variability in landraces populations and the risk to lose genetic variation. The example of landrace ‘Kyperounda’and its implications for ex situ conservation. PloS ONE, 14(10): 1–20.
  • Moon, H.S., Nicholson, J.S., Heinemann, A., Lion, K., Van Der Hoeven, R., Hayes, A.J., Lewis, R.S., 2009a. Changes in genetic diversity of U.S. flue-cured tobacco germplasm over seven decades of cultivar development. Crop Science, 49: 498–508.
  • Moon, H.S., Nifong, J.M., Nicholson J.S., Heineman A., Lion, K., Van Der, H.R., Hayes A.J., Lewis, R.S., 2009b. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.). Crop Science, 49: 2149–2159.
  • Nunome, T., Negoro, S., Kono, I., Kanamori, H., Miyatake, K., Yamaguchi, H, Ohyama, A., Fukuoka, H., 2009. Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theoretical and Applied Genetics, 119: 1143–1153.
  • Peksuslu, A., Yılmaz, I., Inal, A., Kartal, H., 2012. Tobacco Genotypes of Turkey. Journal of AARI, 22(2): 82–90.
  • Ramusino, M.C., Dattilo, B.S., Lucibello, A., Rossi, S.G., 1994. Determination of 25 low molecular weight carbohydrates in tobacco by high performance ion chromatography. Contributions to Tobacco Research, 16(2): 77–84.
  • Roemer, E., Schorp, M.K., Piadé, J.J., Seeman, J.I, Leyden, D.E., Haussmann, H.J., 2012. Scientific assessment of the use of sugars as cigarette tobacco ingredients: a review of published and other publicly available studies. Critical Reviews Toxicology, 42(3): 244–278.
  • Steel, R.G.D., Torrie, J.H., Dickey, D.A., 1997. Principles and Procedures of Statistics: A Biometrical Approach 3rd ed McGraw-Hill New York.
  • Thakur, M.C., Agrawal, S., Patel, M., Khan, A., Doshi, H.V., 2013. Genetic variability of Nicotiana tabacum (Linn.) using SSR marker. World Journal of Agricultural Research, 1(6): 124–129.
  • Tong, Z., Yang, Z., Chen, X., Jiao, F., Li, X., Wu, X., Gao, Y., Xiao, B., Wu, W., 2012. Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breeding, 131(5): 674–680.
  • Yadav, R.K., Gautam, S., Palikhey, E., Joshi, B.K., Ghimire, K.H., Gurung, R,. Adhikari, A.R., Pudasaini, N., Dhakal, R., 2018. Agro-morphological diversity of Nepalese naked barley landraces. Agriculture & Food Security, 7(86): 1–12.
  • Yeh, F.C., Yang, R.C., Boyle, T.B.J, Ye, Z.H., Mao, J.X., 1997. Popgene, The user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada (program available from: http://www. ualberta.ca/fyeh/).
  • Yilmaz, G., Kinay, A., 2011. Effects of different nitrogen rates on yield and quality of tobacco (Nicotiana tabacum L.). Proceeding of the Turkey IX. Field Crops Congress Sep 12-15 Bursa Turkey.
  • Yuksel, S., Akcura, M., 2012. Pattern analysis of multi-environment yield trials in barley (Hordeum vulgare L.). Turkish Journal Agriculture and Forestry, 36: 285–295.
  • Zakova M., Benkova, M., 2006. Characterization of spring barley accessions based on multivariate analysis. Communications in Biometry and Crop Science, 1(2): 124–134.

Samsun tütün üretim alanlarındaki hatlarda genetik ve agronomik varyasyonların belirlenmesi

Yıl 2022, Cilt: 37 Sayı: 3, 617 - 636, 31.10.2022
https://doi.org/10.7161/omuanajas.1089641

Öz

Samsun’da yetiştirilen tütünler tüm dünyada tanınmaktadır. Samsun tütünleri bölge çiftçileri tarafından devam ettirilen, tescil edilmemiş popülasyonlar kullanılarakta yetiştirilmektedir. Bu çalışma Samsun tütünlerindeki genetik ve agronomik varyasyonları belirlemek amacıyla yürütülmüştür. Samsun’da tütün yetiştirilen alanlardan elli sekiz hat toplanmıştır. Bu hatlar, on sekiz SSR markörü kullanılarak analiz edilmiştir. Markörlerin polimorfik bilgi içeriği (PIC) değerleri 0.0 ile 0.702 arasında değişmiştir. On sekiz SSR markörü ile 42 allel belirlenmiştir. SSR lokusu başına ortalama allel sayısı 2.33 olarak belirlenmiştir. Kırk sekiz hattın en az bir SSR lokusu bakımından farklı olduğu belirlenmiş ve bu durum varyasyon seviyesinin yüksek olduğuna işaret etmektedir. Kırk sekiz hat, lokal çeşitler Nail ve Canik ile birlikte bitki boyu, yaprak sayısı, yaprak genişliği, yaprak uzunluğu, yaprak verimi, derece indeksi, yaprak şekeri ve nikotin içeriği gibi tarımsal özellikler açısından iki tarla denemesinde değerlendirilmiştir. Tarımsal karakterlerde de yüksek düzeyde varyasyonlar belirlenmiştir. Hat 2, 11, 13, 21, 28 ve 41 üstün agronomik özellikleri bakımından ön plana çıkmıştır. Bu hatların bazıları doğrudan yeni çeşitler olarak tescil ettirilebilir, ancak hatlar birden fazla lokasyonlarda yürütülecek tarla denemelerinde daha değerlendirilmelidir. Bu hatlar, yeni çeşitlerin geliştirilmesi için ebeveyn olarak da kullanılabilir.

Kaynakça

  • Acquaah, G., 2012. Principles of plant genetics and breeding. Chapter 11. Plant genetic resources 2.ed. Blackwell, Maryland.
  • Aleksoska, A.K., Arsov, Z., Miceska, G., Gveroska, B., Aleksoski, J., Bebic, Z., 2014. Diallel crosses trial- the basis for detection of resistance to diseases in tobacco. Tobacco, 64: 3–12.
  • An, Y., Fu, Y., Luo, S., He, X., Li, H., Nie, H., Jian, F., Zhongjian, H., Li, Y., 2013. Quality analysis of Samsun oriental tobacco leaves in various ecological regions. Chinese Tobacco Science, 2013(3): 94–99.
  • Anderson, J.A., Churchill, G.A., Autrique, J.E., Tanksley, S.D., Sorrells, M.E., 1993. Optimizing parental selection for genetic linkage maps. Genome, 36:181–186.
  • Bindler, G., Hoeven R., Gunduz, I., Plieske, J., Ganal, M., Rossi, L., Gadani, F., Donini, P., 2007. A microsatellite marker based linkage map of tobacco. Theoretical and Applied Genetics, 114(2): 341–349.
  • Bindler, G., Plieske, J., Bakaher, N., Gunduz, I., Ivanov, N., Der Hoeven, R.V., Ganal, M., Donini, P., 2011. A high density genetic map of tobacco (Nicotiana tabacum L.) obtained from large scale microsatellite marker development. Theoretical and Applied Genetics, 123(2): 219–230.
  • Cai, C., Yang, Y., Cheng, L., Tong, C., Feng, J., 2015. Development and assessment of EST SSR marker for the genetic diversity among tobaccos (Nicotiana tabacum L.). Russian Journal of Genetics, 51: 591–600.
  • Camas, N., 1998. The analysis of the inheritence ability of some quantitative characters using line x tester method in tobacco (Nicotiana tabacum L.). Dissertation (unpublished) Ondokuz Mayıs University Samsun Turkey.
  • Camas, N., Caliskan, O., Odabas, M.S., Ayan, A.K., 2009a. The effects of organic originated fertilizer doses on yield and quality of Esendal tobacco cultivar. Proceeding of the Turkey VIII. Field Crops Congress; Sep 18-22 Hatay Turkey.
  • Camas, N., Karaali, H., Caliskan, O., Kurt, D., 2009b. Determination the yield and yield components of Basma tobacco cultivars and accessions under Gumushacikoy conditions. Proceeding of the Turkey VIII. Field Crops Congress Sep 18-22 Hatay Turkey.
  • Ceccarelli, S., 1994. Specific adaptation and breeding for marginal conditions. In: Breeding Fodder Crops for Marginal Conditions Springer Dordrecht.
  • Darvishzadeh, R., Mirzaei, L., Maleki, H.H., Laurentin, H., Alavi, S.R., 2013. Genetic variation in oriental tobacco (Nicotiana tabacum L.) by agro-morphological traits and simple sequence repeat markers. Revista Ciência Agronômica, 44(2): 347–355.
  • Darvishzadeh, R., Basirnia, A., Maleki, H.H., Jafari, M., 2014. Association mapping for resistance to powdery mildew in oriental tobacco (Nicotiana tabacum L.) germplasm. Iranian J Gen Plant Breed, 3(1): 21–30.
  • Davalieva, K., Maleva, I., Filipovski, K., Spiroski, O., Efremov, G.D., 2010. Genetic variability of Macedonian tobacco varieties determined by microsatellite marker analysis. Diversity 2(4): 439–449.
  • Ding, L., Xie, F., Zhao, M., Wang, S., Xie, J., Xu, G., 2007. Rapid quantification of sucrose esters in oriental tobacco by liquid chromatography‐ion trap mass spectrometry. Journal of Separation Science, 30(1): 35–41.
  • Freed, R., Eisensmith, S.P., 1986. MSTAT - Statistical Software for Agronomists. Agronomy Abstract.
  • Fricano, A., Bakaher, N., Del Corvo, M., Piffanelli, P., Donini, P., Stella, A., Ivanov, N.V., Pozzi, C., 2012. Molecular diversity population structure and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm. BMC Genetics ,13(18): 1–13.
  • Gholizadeh, S., Darvishzadeh, R., Mandoulakani, B.A., Bernousi, I., Alavi, S.R., Masouleh, A.K., 2012. Molecular characterization and similarity relationships among flue-cured tobacco (Nicotiana tabacum L.) genotypes using simple sequence repeat markers. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(2): 247–253.
  • Ganesh, C.T., Saiprasad, G.V.S., Raju, M.B., Sheshshayee, M.S., Udayakumar, M., 2014. Genetic structure in FCV tobacco population as assessed by multi-locus genotyping using SSR markers. Advances in Crop Science and Technology, 2(3): 127–135.
  • Hasebe, H., Suhara, S., 1999. The quality estimation of different tobacco types examined by headspace vapor analysis. Contributions to Tobacco Research, 18(5): 213–222.
  • Kandemir, N., Yıldırım, A., Gunduz, R., 2010. Determining the levels of genetic variation using SSR Markers in three Turkish barley materials known as Tokat. Turkish Journal of Agriculture and Forestry, 34: 17–23.
  • Keskin, A., Koprulu, T.K., Bursali, A., Ozsemir, A.C., Yavuz, K.E., Tekin, S., 2014. First record of Ixodes arboricola (Ixodida: Ixodidae) from Turkey with presence of Candidatus Rickettsia vini (Rickettsiales: Rickettsiaceae). Journal of Medical Entomology, 51(4): 864–873.
  • Kinay, A., Yilmaz, G., 2016. Effects of heterosis on agronomically important traits of oriental tobacco (Nicotiana tabacum L.) hybrids. SDU Journal of the Faculty of Agriculture, 11(1): 89–94.
  • Kinay, A., Kurt, D., 2021. Chemical content and quality of sun cured tobacco lines. Anadolu Journal of Agricultural Sciences, 36(2): 282–292.
  • Kurt, D., 2020. Stability analyses for interpreting genotype by environment interaction of selected oriental tobacco landraces. Turkish Journal of Field Crops, 25(1): 83–91.
  • Kurt, D., Yilmaz, G., Kinay, A., 2020. Effects of environmental variations on yield of oriental tobaccos. International Journal of Agriculture and Wildlife Science, 6(2): 310–324.
  • Kurt, D., 2021. Impacts of environmental variations on quality and chemical contents of oriental tobacco. Contributions to Tobacco and Nicotine Research, 30(1): 51–63.
  • Kurt, D., Ayan, A.K., 2014. Effect of the different organic fertilizer sources and doses on yield in organic tobacco (Nicotiana tabacum L.) production. Journal of the Agricultural Faculty of Gaziosmanpasa University, 31(2): 7–14.
  • Kyratzis, A.C., Nikoloudakis, N., Katsiotis, A., 2019. Genetic variability in landraces populations and the risk to lose genetic variation. The example of landrace ‘Kyperounda’and its implications for ex situ conservation. PloS ONE, 14(10): 1–20.
  • Moon, H.S., Nicholson, J.S., Heinemann, A., Lion, K., Van Der Hoeven, R., Hayes, A.J., Lewis, R.S., 2009a. Changes in genetic diversity of U.S. flue-cured tobacco germplasm over seven decades of cultivar development. Crop Science, 49: 498–508.
  • Moon, H.S., Nifong, J.M., Nicholson J.S., Heineman A., Lion, K., Van Der, H.R., Hayes A.J., Lewis, R.S., 2009b. Microsatellite-based analysis of tobacco (Nicotiana tabacum L.). Crop Science, 49: 2149–2159.
  • Nunome, T., Negoro, S., Kono, I., Kanamori, H., Miyatake, K., Yamaguchi, H, Ohyama, A., Fukuoka, H., 2009. Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theoretical and Applied Genetics, 119: 1143–1153.
  • Peksuslu, A., Yılmaz, I., Inal, A., Kartal, H., 2012. Tobacco Genotypes of Turkey. Journal of AARI, 22(2): 82–90.
  • Ramusino, M.C., Dattilo, B.S., Lucibello, A., Rossi, S.G., 1994. Determination of 25 low molecular weight carbohydrates in tobacco by high performance ion chromatography. Contributions to Tobacco Research, 16(2): 77–84.
  • Roemer, E., Schorp, M.K., Piadé, J.J., Seeman, J.I, Leyden, D.E., Haussmann, H.J., 2012. Scientific assessment of the use of sugars as cigarette tobacco ingredients: a review of published and other publicly available studies. Critical Reviews Toxicology, 42(3): 244–278.
  • Steel, R.G.D., Torrie, J.H., Dickey, D.A., 1997. Principles and Procedures of Statistics: A Biometrical Approach 3rd ed McGraw-Hill New York.
  • Thakur, M.C., Agrawal, S., Patel, M., Khan, A., Doshi, H.V., 2013. Genetic variability of Nicotiana tabacum (Linn.) using SSR marker. World Journal of Agricultural Research, 1(6): 124–129.
  • Tong, Z., Yang, Z., Chen, X., Jiao, F., Li, X., Wu, X., Gao, Y., Xiao, B., Wu, W., 2012. Large-scale development of microsatellite markers in Nicotiana tabacum and construction of a genetic map of flue-cured tobacco. Plant Breeding, 131(5): 674–680.
  • Yadav, R.K., Gautam, S., Palikhey, E., Joshi, B.K., Ghimire, K.H., Gurung, R,. Adhikari, A.R., Pudasaini, N., Dhakal, R., 2018. Agro-morphological diversity of Nepalese naked barley landraces. Agriculture & Food Security, 7(86): 1–12.
  • Yeh, F.C., Yang, R.C., Boyle, T.B.J, Ye, Z.H., Mao, J.X., 1997. Popgene, The user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Canada (program available from: http://www. ualberta.ca/fyeh/).
  • Yilmaz, G., Kinay, A., 2011. Effects of different nitrogen rates on yield and quality of tobacco (Nicotiana tabacum L.). Proceeding of the Turkey IX. Field Crops Congress Sep 12-15 Bursa Turkey.
  • Yuksel, S., Akcura, M., 2012. Pattern analysis of multi-environment yield trials in barley (Hordeum vulgare L.). Turkish Journal Agriculture and Forestry, 36: 285–295.
  • Zakova M., Benkova, M., 2006. Characterization of spring barley accessions based on multivariate analysis. Communications in Biometry and Crop Science, 1(2): 124–134.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Dursun Kurt 0000-0001-6697-3954

Ahmet Kınay 0000-0003-4554-2148

İbrahim Saygılı 0000-0003-0449-4872

Nejdet Kandemir 0000-0002-9658-2193

Erken Görünüm Tarihi 27 Ekim 2022
Yayımlanma Tarihi 31 Ekim 2022
Kabul Tarihi 21 Eylül 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 37 Sayı: 3

Kaynak Göster

APA Kurt, D., Kınay, A., Saygılı, İ., Kandemir, N. (2022). Determining the genetic and agronomic variations in lines from Samsun tobacco growing areas. Anadolu Tarım Bilimleri Dergisi, 37(3), 617-636. https://doi.org/10.7161/omuanajas.1089641
AMA Kurt D, Kınay A, Saygılı İ, Kandemir N. Determining the genetic and agronomic variations in lines from Samsun tobacco growing areas. ANAJAS. Ekim 2022;37(3):617-636. doi:10.7161/omuanajas.1089641
Chicago Kurt, Dursun, Ahmet Kınay, İbrahim Saygılı, ve Nejdet Kandemir. “Determining the Genetic and Agronomic Variations in Lines from Samsun Tobacco Growing Areas”. Anadolu Tarım Bilimleri Dergisi 37, sy. 3 (Ekim 2022): 617-36. https://doi.org/10.7161/omuanajas.1089641.
EndNote Kurt D, Kınay A, Saygılı İ, Kandemir N (01 Ekim 2022) Determining the genetic and agronomic variations in lines from Samsun tobacco growing areas. Anadolu Tarım Bilimleri Dergisi 37 3 617–636.
IEEE D. Kurt, A. Kınay, İ. Saygılı, ve N. Kandemir, “Determining the genetic and agronomic variations in lines from Samsun tobacco growing areas”, ANAJAS, c. 37, sy. 3, ss. 617–636, 2022, doi: 10.7161/omuanajas.1089641.
ISNAD Kurt, Dursun vd. “Determining the Genetic and Agronomic Variations in Lines from Samsun Tobacco Growing Areas”. Anadolu Tarım Bilimleri Dergisi 37/3 (Ekim 2022), 617-636. https://doi.org/10.7161/omuanajas.1089641.
JAMA Kurt D, Kınay A, Saygılı İ, Kandemir N. Determining the genetic and agronomic variations in lines from Samsun tobacco growing areas. ANAJAS. 2022;37:617–636.
MLA Kurt, Dursun vd. “Determining the Genetic and Agronomic Variations in Lines from Samsun Tobacco Growing Areas”. Anadolu Tarım Bilimleri Dergisi, c. 37, sy. 3, 2022, ss. 617-36, doi:10.7161/omuanajas.1089641.
Vancouver Kurt D, Kınay A, Saygılı İ, Kandemir N. Determining the genetic and agronomic variations in lines from Samsun tobacco growing areas. ANAJAS. 2022;37(3):617-36.
Online ISSN: 1308-8769