Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Possibilities of Using Hyperspectral Data to Differentiate Yellow Rust Disease Inoculated and Non-Inoculated Plants Under Artificial Epidemic in Wheat

Yıl 2024, Cilt: 39 Sayı: 3, 441 - 468, 30.10.2024
https://doi.org/10.7161/omuanajas.1338803

Öz

Early control of yellow rust (causal agent; Puccinia striiformis f. sp. tritici) is critically important in minimising the losses that may occur. In this study, spectral reflectance values were calculated in some bread and durum varieties inoculated and not inoculated with disease and the obtained graphs were interpreted and the development of disease stress in different band ranges in different phenological periods were evaluated. The research was conducted in 2018-2019 growing season using Bayraktar 2000, Demir 2000, Eser and Kenanbey bread varieties and Variety-1252, Eminbey, Kızıltan 91 and Mirzabey 2000 durum varieties. The material was sown by hand in 33-35 cm row spacing, 1 m long row in 3 replications in October. Fresh spores of the disease were homogenised in essential mineral oil and applied to the test material at 0%, 25%, 50%, 100% application doses. The reaction evaluations of the disease were made on 25 May and 06, 15 June and the infection coefficients were calculated. As a result of the study, spectral reflectance values increased in the visible region and decreased in the Near Infrared region during the same growth period when the non-inoculated group and the groups inoculated with different application doses were compared. In the early middle period (10.5.1), which is the beginning of flowering (25 May 2019) in bread and durum wheat varieties that were not inoculated with the disease, low reflection values were detected in the visible region bands, and an increase in reflection values was observed from the red region. A decrease in reflectance values was determined in the Near Infrared region in the middle-late period (10.5.3), which is the grain setting period (06 June 2019), and in the late period (10.5.4), which is the milking period. As a result of the study, when the reflectance values determined in different phenological periods in wheat were examined, it was seen that visible region bands were more determinative in the early-mid development period and Near Infra Red region bands were more determinative in the middle-late period in the diagnosis of yellow rust disease. It would be useful to repeat the study at different locations with different disease doses at more frequent time intervals and to verify it with hyperspectral cameras mounted on unmanned aerial vehicles.

Kaynakça

  • Anonim, 2019. Ankara Yenimahalle lokasyonu iklim verileri. T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı Meteoroloji Genel Müdürlüğü
  • Akan, K. 2019. Sarı Pas (Puccinia striiformis f. sp. tritici) hastalığına dayanıklı makarnalık buğday hatlarının geliştirilmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 6: 661-670.
  • Aparicio, N. Villegas, D. and Casadesus, J. 2000. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agronomy Journal 92,83-81.
  • Campbell, J.B., 1996. Introduction to remote sensing, The Guilford Press, New York.
  • Devadas, R., Lamb, D. W., Backhouse, D., Simpfendorfer, S. (2015). Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precision Agriculture, 16, 477-491. https://doi.org/10.1007/s11119-015-9390-0.
  • Feng, W., Qi, S., Heng, Y., Zhou, Y., Wu, Y., Liu, W., He, L., Li, X. 2017. Canopy vegetation indices from in situ hyperspectral data to assess plant water status of winter wheat under powdery mildew stress. Frontiers in Plant Science, 8, 1219.
  • Fowler, D. 2018. Winter Wheat Production Manual Chapter 2: Conservation and Winter Wheat Development. In book: Winter Wheat Production Manual Publisher: Ducks Unlimited Canada and Conservation Production Systems Ltd.
  • Gitelson, A. A., Merzlyak, M. N., Chivkunova, O. B. 2001. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74(1), 38-45. https://doi.org/10.1562/0031-8655(2001)0740038OPANEO2.0.CO2
  • Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76-87.
  • Huang, W., Lamb, D. W., Niu, Z., Zhang, Y., Liu, L., Wang, J. 2007. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 8, 187-197.
  • Hatfield, P. L., Pinter Jr, P. J. (1993). Remote sensing for crop protection. Crop Protection, 12(6), 403-413. https://doi.org/10.1016/0261-2194(93)90001-Y.
  • Huang, W., Lamb, D. W., Niu, Z., Zhang, Y., Liu, L., Wang, J. 2007. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 8, 187-197.
  • Huang, N., Niu, Z., Zhan, Y., Xu, S., Tappert, M. C., Wu, C., Huang W., Gao S., Hou, X., Cai, D. (2012). Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Agricultural and Forest Meteorology, 160, 80-89. https://doi.org/10.1016/j.agrformet.2012.03.005
  • IBM SPSS Statistics 2016. IBM SPSS Statistics software version 24. Chicago.
  • Large, E. C. (1954). Growth stages in cereals. Illustration of the Feekes scale. Plant Pathology, 3, 128-129. https://doi.org/10.1111/j.1365-3059.1954.tb00716.x.
  • Li, G. B., Zeng, S. M., Li, Z. Q. 1989. Integrated management of wheat pests (pp. 185-186). Beijing: Press of Agriculture Science and Technology of China.
  • Lillesand, T.M., Kiefer, R.W. 1994, Remote sensing and image interpretation, John Wiley & Sons, Inc., New York, USA.
  • Lu, J., Ehsani, R., Shi, Y., de Castro, A. I., Wang, S. 2018. Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor. Scientific Reports, 8(1), 2793. https://doi.org/10.1038/s41598-018-21191-6.
  • Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., Oerke, E. C. 2013. Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21-30. https://doi.org/10.1016/j.rse.2012.09.019
  • Monteith, J.L. 1972, Solar radiation and productivity in tropical ecosystems, J. Appl. Ecol., 9, 747–766.
  • Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., Ramon, H. 2005. Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging, 11(2), 75-83. https://doi.org/10.1016/j.rti.2005.03.003.
  • Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., Ramon, H. 2004. Automatic detection of ‘yellow rust’in wheat using reflectance measurements and neural networks. Computers and electronics in agriculture, 44(3), 173-188. https://doi.org/10.1016/j.compag.2004.04.003.
  • Muurinen, S., and Peltonen-Sainio, P. 2006. Radiation-use efficiency of modern and old spring cereal cultivars and its response to nitrogen in northern growing conditions. Field Crops Research 96(2-3), 363-373.
  • Myers, V. I. 1983. Remote sensing applications in agriculture (in Manual of Remote Sensing) American Soc. Photogramm, and Rem. Sens., Falls Church, Va 2111-228.
  • Naidu, R. A., Perry, E. M., Pierce, F. J., Mekuria, T. 2009. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Computers and Electronics in Agriculture, 66(1), 38-45. https://doi.org/10.1016/j.compag.2008.11.007.
  • Nicolas, H. 2004. Using remote sensing to determine of the date of a fungicide application on winter wheat. Crop Protection, 23(9), 853-863. https://doi.org/10.1016/j.cropro.2004.01.008
  • Nilsson, H.E. 1995a. Remote sensing and image analysis in plant pathology. Annual review of pPhytopathology, 33(1), 489-528.
  • Nilsson, H.E., 1995b. Remote sensing and image analysis in plant pathology, Canadian Journal of Plant Pathology, 17, 154-166.
  • Penuelas, J., Baret, F., Filella, I. 1995. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31(2), 221-230.
  • Peterson, R. F., Campbell, A. B., Hannah, A. E. 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26(5), 496-500. https://doi.org/10.1139/cjr48c-033
  • Qin, Z., Zhang, M. 2005. Detection of rice sheath blight for in-season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 7(2), 115-128. https://doi.org/10.1016/j.jag.2005.03.004
  • Roelfs, A.P., Singh, R.P., and Saari. E.E., 1992. Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, D.F.: CIMMYT. 81 pages.
  • Trotter, G.M., Whitehead, D. and Pinkney, E.J. 2002, The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants of varying foliar nitrogen contents, International Journal of Remote Sensing, 23(6), 1207-1212.
  • Yuan, L., Zhang, J. C., Wang, K., Loraamm, R. W., Huang, W. J., Wang, J. H., Zhao, J. L. 2013. Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat. Precision Agriculture, 14, 495-511.
  • Zhang, M.,Qin, Z.,Ustin, S.L., 2003. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation 4(4):295-310. DOI: 10.1016/S0303-2434(03)00008-4.
  • Zhang, J., Pu, R., Huang, W., Yuan, L., Luo, J., Wang, J. 2012. Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Research, 134, 165-174. https://doi.org/10.1016/j.fcr.2012.05.011.

Buğdayda Yapay Epidemi altında Sarı Pas Hastalığı İnokule Edilen ve Edilmeyen Bitkilerin Ayrımında Çok Bantlı (Hiperspektral) Verilerin Kullanılma Olanaklarının Araştırılması

Yıl 2024, Cilt: 39 Sayı: 3, 441 - 468, 30.10.2024
https://doi.org/10.7161/omuanajas.1338803

Öz

Sarı pas (Etmen; Puccinia striiformis f. sp. tritici) hastalığının erken dönemde kontrolü yaşanabilecek kayıpların en alt düzeye indirilmesinde krtik derecede önemlidir. Araştırmada hastalık inokule edilen ve inokule edilmeyen bazı ekmeklik ve makarnalık çeşitlerinde spektral yansıma değerleri hesaplanmış, elde edilen grafikler yorumlanarak hastalık stresinin değişen fenolojik dönemlerdeki farklı bant aralıklarındaki gelişimleri değerlendirilmiştir. Araştırma 2018-2019 yetiştirme sezonunda Bayraktar 2000, Demir 2000, Eser ve Kenanbey ekmeklik çeşitleri ile Çeşit-1252, Eminbey, Kızıltan 91 ve Mirzabey 2000 makarnalık çeşitleri kullanılarak yürütülmüştür. Materyal 33-35 cm sıra arası,1 m uzunluğundaki sıraya 3 tekerrürlü olarak Ekim ayı içinde elle ekilmiştir. Hastalığın taze sporları uçucu mineral yağ içinde homojenize edilerek %0, %25, %50, %100 uygulama dozlarında test materyaline uygulanmıştır. Hastalığın reaksiyon değerlendirmeleri 25 Mayıs ile 06, 15 Haziran tarihlerinde yapılmış olup, enfeksiyon katsayıları hesaplanmıştır. Çalışma sonucu inokule edilmeyen grupla farklı uygulama dozu inokule edilen gruplar karşılaştırıldığında, spektral yansıma değerleri, aynı gelişme dönemi boyunca görünür bölgede artarken, Yakın Kızıl Ötesi bölgede azalma tespit edilmiştir. Hastalık inokule edilmeyen Ekmeklik ve makarnalık buğday çeşitlerinde çiçeklenmenin başlangıcı olan (25 Mayıs 2019) erken orta dönemde (10.5.1), görünür bölge bantlarında düşük yansıma değerleri tespit edilmiş olup, kırmızı (red) bölgeden itibaren yansıma değerlerinde bir artış gözlemlenmiştir. Dane bağlama dönemi olan (06 Haziran 2019) orta-geç dönemde (10.5.3), süt olum dönemi olan geç dönemde (10.5.4) Yakın Kızıl Ötesi bölgede ise yansıma değerlerinde bir azalma belirlenmiştir. Çalışma sonucunda buğdayda farklı fenolojik dönemlerde belirlenen yansıma değerleri incelendiğinde, sarı pas hastalığının teşhisinde erken-orta gelişme döneminde, görünür bölge bantlarının, orta-geç dönemde ise Yakın Kızıl Ötesi bölge bantlarının daha belirleyici olduğu görülmüştür.Çalışmanın farklı lokasyonlarda farklı hastalık dozlarında daha sık zaman aralıklarında tekrarlanması ve insanız hava araçlarına takılmış hyperspektral kameralarla doğrulanması faydalı olacaktır.

Teşekkür

Bu çalışma Metin AYDOĞDU tarafından Kırşehir Ahi Evran Üniversitesi Fen Bilimleri Enstitüsü Tarımsal Biyoteknoloji Anabilim Dalında yürütülen “Kışlık buğdayda farklı demir ve çinko uygulamalarının sarı pas (Puccinia striiformis f. sp. tritici) hastalığı üzerine olan mevsimsel etkilerinin çok bantlı veriler kullanılarak belirlenmesi” isimli yüksek lisans tezinin (YÖK Tez No: 671046/Tarih: 25.05.2021) bir kısmını kapsamaktadır. Tez jürisinde bulunan sayın Prof. Dr. Hikmet GÜNAL ve sayın Dr. Öğr. Üyesi Nurullah ACİR’e katkılarından dolayı teşekkür ederiz.

Kaynakça

  • Anonim, 2019. Ankara Yenimahalle lokasyonu iklim verileri. T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı Meteoroloji Genel Müdürlüğü
  • Akan, K. 2019. Sarı Pas (Puccinia striiformis f. sp. tritici) hastalığına dayanıklı makarnalık buğday hatlarının geliştirilmesi. Türk Tarım ve Doğa Bilimleri Dergisi, 6: 661-670.
  • Aparicio, N. Villegas, D. and Casadesus, J. 2000. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agronomy Journal 92,83-81.
  • Campbell, J.B., 1996. Introduction to remote sensing, The Guilford Press, New York.
  • Devadas, R., Lamb, D. W., Backhouse, D., Simpfendorfer, S. (2015). Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat. Precision Agriculture, 16, 477-491. https://doi.org/10.1007/s11119-015-9390-0.
  • Feng, W., Qi, S., Heng, Y., Zhou, Y., Wu, Y., Liu, W., He, L., Li, X. 2017. Canopy vegetation indices from in situ hyperspectral data to assess plant water status of winter wheat under powdery mildew stress. Frontiers in Plant Science, 8, 1219.
  • Fowler, D. 2018. Winter Wheat Production Manual Chapter 2: Conservation and Winter Wheat Development. In book: Winter Wheat Production Manual Publisher: Ducks Unlimited Canada and Conservation Production Systems Ltd.
  • Gitelson, A. A., Merzlyak, M. N., Chivkunova, O. B. 2001. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74(1), 38-45. https://doi.org/10.1562/0031-8655(2001)0740038OPANEO2.0.CO2
  • Gitelson, A. A., Kaufman, Y. J., Stark, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80(1), 76-87.
  • Huang, W., Lamb, D. W., Niu, Z., Zhang, Y., Liu, L., Wang, J. 2007. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 8, 187-197.
  • Hatfield, P. L., Pinter Jr, P. J. (1993). Remote sensing for crop protection. Crop Protection, 12(6), 403-413. https://doi.org/10.1016/0261-2194(93)90001-Y.
  • Huang, W., Lamb, D. W., Niu, Z., Zhang, Y., Liu, L., Wang, J. 2007. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture, 8, 187-197.
  • Huang, N., Niu, Z., Zhan, Y., Xu, S., Tappert, M. C., Wu, C., Huang W., Gao S., Hou, X., Cai, D. (2012). Relationships between soil respiration and photosynthesis-related spectral vegetation indices in two cropland ecosystems. Agricultural and Forest Meteorology, 160, 80-89. https://doi.org/10.1016/j.agrformet.2012.03.005
  • IBM SPSS Statistics 2016. IBM SPSS Statistics software version 24. Chicago.
  • Large, E. C. (1954). Growth stages in cereals. Illustration of the Feekes scale. Plant Pathology, 3, 128-129. https://doi.org/10.1111/j.1365-3059.1954.tb00716.x.
  • Li, G. B., Zeng, S. M., Li, Z. Q. 1989. Integrated management of wheat pests (pp. 185-186). Beijing: Press of Agriculture Science and Technology of China.
  • Lillesand, T.M., Kiefer, R.W. 1994, Remote sensing and image interpretation, John Wiley & Sons, Inc., New York, USA.
  • Lu, J., Ehsani, R., Shi, Y., de Castro, A. I., Wang, S. 2018. Detection of multi-tomato leaf diseases (late blight, target and bacterial spots) in different stages by using a spectral-based sensor. Scientific Reports, 8(1), 2793. https://doi.org/10.1038/s41598-018-21191-6.
  • Mahlein, A. K., Rumpf, T., Welke, P., Dehne, H. W., Plümer, L., Steiner, U., Oerke, E. C. 2013. Development of spectral indices for detecting and identifying plant diseases. Remote Sensing of Environment, 128, 21-30. https://doi.org/10.1016/j.rse.2012.09.019
  • Monteith, J.L. 1972, Solar radiation and productivity in tropical ecosystems, J. Appl. Ecol., 9, 747–766.
  • Moshou, D., Bravo, C., Oberti, R., West, J., Bodria, L., McCartney, A., Ramon, H. 2005. Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging, 11(2), 75-83. https://doi.org/10.1016/j.rti.2005.03.003.
  • Moshou, D., Bravo, C., West, J., Wahlen, S., McCartney, A., Ramon, H. 2004. Automatic detection of ‘yellow rust’in wheat using reflectance measurements and neural networks. Computers and electronics in agriculture, 44(3), 173-188. https://doi.org/10.1016/j.compag.2004.04.003.
  • Muurinen, S., and Peltonen-Sainio, P. 2006. Radiation-use efficiency of modern and old spring cereal cultivars and its response to nitrogen in northern growing conditions. Field Crops Research 96(2-3), 363-373.
  • Myers, V. I. 1983. Remote sensing applications in agriculture (in Manual of Remote Sensing) American Soc. Photogramm, and Rem. Sens., Falls Church, Va 2111-228.
  • Naidu, R. A., Perry, E. M., Pierce, F. J., Mekuria, T. 2009. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars. Computers and Electronics in Agriculture, 66(1), 38-45. https://doi.org/10.1016/j.compag.2008.11.007.
  • Nicolas, H. 2004. Using remote sensing to determine of the date of a fungicide application on winter wheat. Crop Protection, 23(9), 853-863. https://doi.org/10.1016/j.cropro.2004.01.008
  • Nilsson, H.E. 1995a. Remote sensing and image analysis in plant pathology. Annual review of pPhytopathology, 33(1), 489-528.
  • Nilsson, H.E., 1995b. Remote sensing and image analysis in plant pathology, Canadian Journal of Plant Pathology, 17, 154-166.
  • Penuelas, J., Baret, F., Filella, I. 1995. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31(2), 221-230.
  • Peterson, R. F., Campbell, A. B., Hannah, A. E. 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26(5), 496-500. https://doi.org/10.1139/cjr48c-033
  • Qin, Z., Zhang, M. 2005. Detection of rice sheath blight for in-season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 7(2), 115-128. https://doi.org/10.1016/j.jag.2005.03.004
  • Roelfs, A.P., Singh, R.P., and Saari. E.E., 1992. Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, D.F.: CIMMYT. 81 pages.
  • Trotter, G.M., Whitehead, D. and Pinkney, E.J. 2002, The photochemical reflectance index as a measure of photosynthetic light use efficiency for plants of varying foliar nitrogen contents, International Journal of Remote Sensing, 23(6), 1207-1212.
  • Yuan, L., Zhang, J. C., Wang, K., Loraamm, R. W., Huang, W. J., Wang, J. H., Zhao, J. L. 2013. Analysis of spectral difference between the foreside and backside of leaves in yellow rust disease detection for winter wheat. Precision Agriculture, 14, 495-511.
  • Zhang, M.,Qin, Z.,Ustin, S.L., 2003. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation 4(4):295-310. DOI: 10.1016/S0303-2434(03)00008-4.
  • Zhang, J., Pu, R., Huang, W., Yuan, L., Luo, J., Wang, J. 2012. Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Research, 134, 165-174. https://doi.org/10.1016/j.fcr.2012.05.011.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tarımsal Biyoteknoloji (Diğer)
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Metin Aydoğdu 0000-0001-6920-1976

Kadir Akan 0000-0002-1612-859X

Erken Görünüm Tarihi 25 Ekim 2024
Yayımlanma Tarihi 30 Ekim 2024
Kabul Tarihi 17 Mayıs 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 39 Sayı: 3

Kaynak Göster

APA Aydoğdu, M., & Akan, K. (2024). Buğdayda Yapay Epidemi altında Sarı Pas Hastalığı İnokule Edilen ve Edilmeyen Bitkilerin Ayrımında Çok Bantlı (Hiperspektral) Verilerin Kullanılma Olanaklarının Araştırılması. Anadolu Tarım Bilimleri Dergisi, 39(3), 441-468. https://doi.org/10.7161/omuanajas.1338803
AMA Aydoğdu M, Akan K. Buğdayda Yapay Epidemi altında Sarı Pas Hastalığı İnokule Edilen ve Edilmeyen Bitkilerin Ayrımında Çok Bantlı (Hiperspektral) Verilerin Kullanılma Olanaklarının Araştırılması. ANAJAS. Ekim 2024;39(3):441-468. doi:10.7161/omuanajas.1338803
Chicago Aydoğdu, Metin, ve Kadir Akan. “Buğdayda Yapay Epidemi altında Sarı Pas Hastalığı İnokule Edilen Ve Edilmeyen Bitkilerin Ayrımında Çok Bantlı (Hiperspektral) Verilerin Kullanılma Olanaklarının Araştırılması”. Anadolu Tarım Bilimleri Dergisi 39, sy. 3 (Ekim 2024): 441-68. https://doi.org/10.7161/omuanajas.1338803.
EndNote Aydoğdu M, Akan K (01 Ekim 2024) Buğdayda Yapay Epidemi altında Sarı Pas Hastalığı İnokule Edilen ve Edilmeyen Bitkilerin Ayrımında Çok Bantlı (Hiperspektral) Verilerin Kullanılma Olanaklarının Araştırılması. Anadolu Tarım Bilimleri Dergisi 39 3 441–468.
IEEE M. Aydoğdu ve K. Akan, “Buğdayda Yapay Epidemi altında Sarı Pas Hastalığı İnokule Edilen ve Edilmeyen Bitkilerin Ayrımında Çok Bantlı (Hiperspektral) Verilerin Kullanılma Olanaklarının Araştırılması”, ANAJAS, c. 39, sy. 3, ss. 441–468, 2024, doi: 10.7161/omuanajas.1338803.
ISNAD Aydoğdu, Metin - Akan, Kadir. “Buğdayda Yapay Epidemi altında Sarı Pas Hastalığı İnokule Edilen Ve Edilmeyen Bitkilerin Ayrımında Çok Bantlı (Hiperspektral) Verilerin Kullanılma Olanaklarının Araştırılması”. Anadolu Tarım Bilimleri Dergisi 39/3 (Ekim 2024), 441-468. https://doi.org/10.7161/omuanajas.1338803.
JAMA Aydoğdu M, Akan K. Buğdayda Yapay Epidemi altında Sarı Pas Hastalığı İnokule Edilen ve Edilmeyen Bitkilerin Ayrımında Çok Bantlı (Hiperspektral) Verilerin Kullanılma Olanaklarının Araştırılması. ANAJAS. 2024;39:441–468.
MLA Aydoğdu, Metin ve Kadir Akan. “Buğdayda Yapay Epidemi altında Sarı Pas Hastalığı İnokule Edilen Ve Edilmeyen Bitkilerin Ayrımında Çok Bantlı (Hiperspektral) Verilerin Kullanılma Olanaklarının Araştırılması”. Anadolu Tarım Bilimleri Dergisi, c. 39, sy. 3, 2024, ss. 441-68, doi:10.7161/omuanajas.1338803.
Vancouver Aydoğdu M, Akan K. Buğdayda Yapay Epidemi altında Sarı Pas Hastalığı İnokule Edilen ve Edilmeyen Bitkilerin Ayrımında Çok Bantlı (Hiperspektral) Verilerin Kullanılma Olanaklarının Araştırılması. ANAJAS. 2024;39(3):441-68.
Online ISSN: 1308-8769