Araştırma Makalesi
BibTex RIS Kaynak Göster

Selection of Lentil Cultivars Tolerant to High Temperatures During Germination and Emergence Stages Based on Tolerance Indices and Rank Analysis

Yıl 2025, Cilt: 40 Sayı: 1, 39 - 52, 28.02.2025

Öz

Since high temperatures at the early growth stages limit seedling establishment and grain yield of lentil, selection of heat-tolerant genotypes is essential for high and stable grain yields. The heat tolerance of 16 lentil cultivars were determined by seven stress indices [(stress susceptibility index (SSI), stress tolerance index (STI), relative heat index (RHI), heat resistance index (HRI), geometric mean productivity (GMP), tolerance index (TI), high temperature tolerance index (HTTI)] and ranking method based on germination vigor index and emergence vigor index criteria. Under stress conditions, the highest germination vigor indices were obtained from cv. Çağıl, Gümrah, Fırat 87 and Meyveci 2001; the highest emergence vigor indices were obtained from cv. Gümrah, Emre 20, Meyveci 2001 and Bozok. The tolerance rankings of the varieties to heat stress varied according to the stress indices. STI and GMP were found to be positive significant association with the criterion values and identified as the most suitable stress indices for the selection of genotypes with heat tolerant. Based on combination of the stress indices (ranking method), cv. Gümrah and Meyveci 2001 were selected as the most heat tolerant, while cv. Kayı 91, Tigris, Ankara Yeşili and Ceren as the most heat sensitive. Gümrah and Meyveci 2001 cultivars can be used as potential genetic resources to improve high temperature tolerance and for sustainable production.

Kaynakça

  • Aberkane, H., Belkadi, B., Kehel, Z., Filali-Maltouf, A., Tahir, I.S.A., Meheesi, S., Amri, A., 2021. Assessment of drought and heat tolerance of durum wheat lines derived from interspecific crosses using physiological parameters and stress indices. Agronomy, 11(695): 1-20. doi: 10.3390/agronomy11040695.
  • Aktar Uz Zaman, M., Haque, M.A., Sarker, A., Alam, M.A., Rohman, M.M., Ali, M.O., Alkhateeb, M.A., Gaber, A., Hossain, A., 2022. Selection of lentil (Lens Culinaris Medik.) genotypes suitable for high-temperature conditions based on stress tolerance indices and principal component analysis. Life, 12(11): 1-32. doi: 10.3390/life12111719.
  • Bankar, P.B., More, N.S., Bharud, R.W., Wagh, R.S., Gare, S.S., 2023. Effect of elevated temperature on seed germination and seedling growth indices of chickpea genotypes (Cicer arietinum L.). The Pharma Innovation Journal, 12(2): 3651-3660.
  • Basu, P.S., Chaturvedi, S.K., Gaur, P.M., Mondal, B., Meena, S.K., Das, K., Kumar, V., Tewari, K., Sharma, K., 2022. Physiological mechanisms of tolerance to drought and heat in major pulses for improving yield under stress environments. Advances in Plant Defense Mechanisms. In: Kimatu, J.N. (Eds). IntechOpen. pp. 1-41.
  • Chakraborty, U., Pradhan, D., 2011. High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. Journal of Plant Interactions, 6(1): 43-52. doi: 10.1080/17429145.2010.513484.
  • Das, S.K., Rafiqul Islam, A.T.M., 2018. Effects of salinity on germination and seedling growth of lentil (Lens culinaris Medik.) varieties in Bangladesh. Barishal University Journal, 5(1-2): 141-151.
  • Delahunty, A.J., 2021. Increasing lentil (Lens culinaris) adaptation to acute high temperature for arable cropping. PhD Thesis. The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, p. 206, Melbourne.
  • Delahunty, A., Nuttall. J., Nicolas. M., Brand. J., 2015. Genotypic heat tolerance in lentil. Proceedings of the 17th ASA Conference, 20-24 September, Hobart, Australia.
  • Delahunty, A.J., Brand, J.D., Nuttall, J.G., 2023. Field screening of lentil (Lens culinaris) for high-temperature tolerance. Agronomy 2023, 13(7): 1-21. doi: 10.3390/agronomy13071753.
  • Driedonks, N., Rieu, I., Vriezen, W.H., 2016. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod, 29: 67-79. doi: 10.1007/s00497-016-0275-9.
  • El haddad, N., Rajendran, K., Smouni, A., Es-Safi, N.E., Benbrahim, N., Mentag, R., Nayyar, H., Maalouf, F., Kumar, S., 2020. Screening the FIGS set of lentil (Lens culinaris Medikus) germplasm for tolerance to terminal heat and combined drought-heat stress. Agronomy, 10(20): 1-27. doi: 10.3390/agronomy10071036.
  • Farshadfar, E., Poursiahbidi, M.M., Safavi, S.M., 2018. Assessment of drought tolerance in land races of bread wheat based on resistance/tolerance indices. International journal of Advanced Biological and Biomedical Research, 6(4): 233-245.
  • Fernandez, G.C.J., 1992. Effective selection criteria for assessing plant stress tolerance. Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, 257–270, 13–16 August, Taiwan.
  • Fischer, R. A., Maurer, R., 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5): 897-912. doi: 10.1071/AR9780897.
  • Gupta, P.C., 1993. Seed vigour testing. ‘‘Alınmıştır: Handbook of Seed Testing. (ed) Agrawal, P.K., New Delhi, 242-249.
  • Hamza, F.E.A., Idris, A.E., Elagib, T.Y., Eltayeb, A.H., Adam, A.H.M., 2023. Evaluation of selection indices for heat tolerance and their correlation with yield in some chickpea (Cicer arietinum L.) genotypes of Sudan. Journal of Agronomy Research, 5(1): 1-15. doi: 10.14302/issn.2639-3166.jar-22-4403.
  • Hasan, M.A., Ahmed, J.U., Hossain, T., Hossain, M.M., Ullah, M.A., 2004. Germination characters and seed reserve mobilization during germination of different wheat genotypes under variable temperature regimes. Journal of the National Science Foundation of Sri Lanka, 32 (3-4): 97-107.
  • Kang, M.S., 1988. A rank-sum method for selecting high yielding, stable corn genotypes. Cereal Research Communications, 16(1-2): 113-115.
  • Kumar, V., Poonia, R.C., Chaudhary, K., 2018. Assessment of the seed vigour potential in different varieties of wheat. International Journal of Current Microbiology and Applied Sciences, 7(7): 354-361. doi: 10.20546/ijcmas.2018.707.043.
  • Lafond, G.P., Fowler, B.D., 1989. Soil temperature and water content, seeding depth, and simulated rainfall effects on winter wheat emergence. Agronomy Journal, 81(4): 609-614. doi: 10.2134/agronj1989.00021962008100040012x.
  • Lamba, K., Kumar, M., Singh, V., Chaudhary, L., Sharma, R., Yashveer, S., Dalal, S., 2023. Heat stress tolerance indices for identification of the heat tolerant wheat genotypes. Scientific Reports, 13(1): 1-13. doi: 10.1038/s41598-023-37634-8.
  • Lan, J., 1998. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Boreali-occidentalis Sinica, 7: 85-87.
  • Longmei, N., Gill, G.K., Kumar, R., Zaidi, P.H., 2023. Selection indices for identifying heat tolerant of maize (Zea mays). The Indian Journal of Agricultural Sciences, 93(1): 46-50. doi: 10.56093/ijas.v93i1.108617.
  • Maestri, E., Klueva, N., Perrotta. C., Gulli, M., Nguyen, H.T., Marmiroli, N., 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant molecular biology, 48: 667-681.
  • Makkawi, M., El Balla, M., Bishaw, Z., van Gastel, A.J.G., 2008. Correlation and path coefficient analyses of laboratory tests as predictors of field emergence in lentil (Lens culinaris Medikus). Journal of New Seeds, 9 (4): 284-302. doi: 10.1080/15228860802308594.
  • Mitra, J., 2001. Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80(6): 758-763.
  • Ozkan, H., Yagbasanlar, T., Genc, I., 1998. Tolerance and stability studies on durum wheat under drought and heat stress conditions. Cereal Research Communication, 26(4): 405-412.
  • Öztürk, A., Dumlu, A., Kartay, H., 2024. Mercimek çeşitlerinin yüksek sıcaklıklara tepkileri: tohum çimlenmesi ve fide çıkışı. Türk Tarım ve Doğa Bilimleri Dergisi, 11(2): 442-453. doi: 10.30910/turkjans.1437147.
  • Paliwal, R., Roder, M.S., Kumar, U., Srivastava, J.P., Joshi, A.K., 2012. QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theoretical Applied Genetics, 125: 561-575. doi: 10.1007/s00122-012-1853-3.
  • Porch, T.G., 2006. Application of stress indices for heat tolerance screening of common bean. J. Agronomy and Crop Science, 192(5): 390-394. doi: 10.1111/j.1439-037X.2006.00229.x.
  • Poudel, P.B., Poudel, M.R., Puri, R.R., 2021. Evaluation of heat stress tolerance in spring wheat (Triticum aestivum L.) genotypes using stress tolerance indices in western region of Nepal. Journal of Agriculture and Food Research, 5: 1-6. doi: 10.1016/j.jafr.2021.100179.
  • Puri, R.R., Gautam, N.R., Joshi, A.K., 2015. Exploring stress tolerance indices to identify terminal heat tolerance in spring wheat in Nepal. Journal of Wheat Research, 7(1): 13-17.
  • Li, Q., Wang, Z., Li, D, Wei, J., Qiao, W., Meng, X, Sun, S., Li, H., Zhao, M., Chen, X., Zhao, F., 2018. Evaluation of a new method for quantification of heat tolerance in different wheat cultivars. Journal of Integrative Agriculture, 17(4): 786-795. doi: 10.1016/s2095-3119(17)61716-7.
  • Rich, S.M., Berger, J., Lawes, R., Fletcher, A., 2022. Chickpea and lentil show little genetic variation in emergence ability and rate from deep sowing, but small-sized seed produces less vigorous seedlings. Crop and Pasture Science, 73 (9): 1042-1055. doi: 10.1071/CP21673.
  • Rosielle, A.A., Hamblin, J., 1981. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science, 21(6): 943-946. doi: 10.2135/cropsci1981.0011183X002100060033x.
  • Singh, N.T., Dhaliwal, G.S., 1972. Effect of soil temperature on seedling emergence in different crops. Plant and Soil, 37: 441-444.
  • Sita, K., Sehgal, A., HanumanthaRao, B., Nair, R.M., Vara Prasad, P.V., Kumar, S., Gaur, P.M., Farooq, M., Siddique, K.H.M., Varshney, R.K., Nayyar, H., 2017. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to ımprove heat tolerance. Frontiers in Plant Science, 8: 1-30. doi: 10.3389/fpls.2017.01658.
  • Sunil, R., Chhabra, A.K., Yadav, R.K., Kumar, S., 2023. Assessment of chickpea (Cicer arietinum L.) genotypes under normal and late sown environments using stress ındices. Agricultural Science Digest. 43(6): 807-811. doi: 10.18805/ag.D-5317.
  • Tanveer, A., Rehman, A., Javaid, M.M., Abbas, R.N., Sibtain, M., Ahmad, A., Ibin Zamir, M.S., Chaudhary, K.M., Aziz, A., 2010. Allelopathic potential of Euphorbia helioscopia L. against wheat (Triticum aestivum L.), chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medic.). Turkish Journal of Agriculture and Forestry, 34(1): 75-81. doi: 10.3906/tar-0903-53.
  • Venugopalan, V.K., Nath, R., Sengupta, K., Nalia, A., Banerjee, S., Chandran, M.A.S., Ibrahimova, U., Dessoky, E.S., Attia, A.O., Hassan, M.M., Hossain, A., 2021. The response of lentil (Lens culinaris Medik.) to soil moisture and heat stress under different dates of sowing and foliar application of micronutrients. Frontiers in Plant Science, 12: 1-16. doi: 10.3389/fpls.2021.679469.
  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3):199-223. doi: 10.1016/j.envexpbot.2007.05.011.
  • Watt, M.S., Bloomberg, M., 2012. Key features of the seed germination response to high temperatures. New Phytologist, 196(2): 332-336.

Çimlenme ve Çıkış Dönemlerindeki Yüksek Sıcaklıklara Toleranslı Mercimek Çeşitlerinin Stres İndeksleri ve Rank Analizi ile Seçimi

Yıl 2025, Cilt: 40 Sayı: 1, 39 - 52, 28.02.2025

Öz

Erken gelişme dönemlerindeki yüksek sıcaklıklar mercimeğin fide tesisi ve tane verimini sınırladığından, yüksek ve istikrarlı verimler için sıcağa toleranslı genotiplerin seçimi esastır. Bu çalışmada, çimlenme güç indeksi ve çıkış güç indeksi ölçütleri esas alınarak, 16 mercimek çeşidi yedi farklı stres indeksi [stres hassasiyet indeksi (SHİ), stres tolerans indeksi (STİ), nispi sıcaklık indeksi (NSİ), sıcağa dayanıklılık indeksi (SDİ), geometrik ortalama verimlilik (GOV), tolerans indeksi (Tİ), yüksek sıcaklık tolerans indeksi (YSTİ)] ve rank analiz yöntemi ile yüksek sıcaklığa tolerans bakımından değerlendirilmiştir. Stres koşullarında en yüksek çimlenme güç indeksleri Çağıl, Gümrah, Fırat 87 ve Meyveci 2001; en yüksek çıkış güç indeksleri ise Gümrah, Emre 20, Meyveci 2001 ve Bozok çeşitlerinde belirlenmiştir. Çeşitlerin sıcaklık stresine tolerans sıraları stres indekslerine göre farklılık göstermiştir. Ölçüt değerleri ile olumlu ve önemli ilişkileri nedeniyle, sıcağa toleranslı genotiplerin seçimi için en uygun stres indekslerinin STİ ve GOV olduğu sonucuna varılmıştır. Stres indekslerinin kombinasyonu (rank analizi), Gümrah ve Meyveci 2001 çeşitlerinin yüksek sıcaklıklara en toleranslı; Kayı 91, Tigris, Ankara Yeşili ve Ceren çeşitleri ise en duyarlı olduğunu göstermiştir. Gümrah ve Meyveci 2001 çeşitleri, yüksek sıcaklığa toleransı geliştirmek ve sürdürülebilir üretim için potansiyel genetik kaynaklar olarak tanımlanmıştır.

Kaynakça

  • Aberkane, H., Belkadi, B., Kehel, Z., Filali-Maltouf, A., Tahir, I.S.A., Meheesi, S., Amri, A., 2021. Assessment of drought and heat tolerance of durum wheat lines derived from interspecific crosses using physiological parameters and stress indices. Agronomy, 11(695): 1-20. doi: 10.3390/agronomy11040695.
  • Aktar Uz Zaman, M., Haque, M.A., Sarker, A., Alam, M.A., Rohman, M.M., Ali, M.O., Alkhateeb, M.A., Gaber, A., Hossain, A., 2022. Selection of lentil (Lens Culinaris Medik.) genotypes suitable for high-temperature conditions based on stress tolerance indices and principal component analysis. Life, 12(11): 1-32. doi: 10.3390/life12111719.
  • Bankar, P.B., More, N.S., Bharud, R.W., Wagh, R.S., Gare, S.S., 2023. Effect of elevated temperature on seed germination and seedling growth indices of chickpea genotypes (Cicer arietinum L.). The Pharma Innovation Journal, 12(2): 3651-3660.
  • Basu, P.S., Chaturvedi, S.K., Gaur, P.M., Mondal, B., Meena, S.K., Das, K., Kumar, V., Tewari, K., Sharma, K., 2022. Physiological mechanisms of tolerance to drought and heat in major pulses for improving yield under stress environments. Advances in Plant Defense Mechanisms. In: Kimatu, J.N. (Eds). IntechOpen. pp. 1-41.
  • Chakraborty, U., Pradhan, D., 2011. High temperature-induced oxidative stress in Lens culinaris, role of antioxidants and amelioration of stress by chemical pre-treatments. Journal of Plant Interactions, 6(1): 43-52. doi: 10.1080/17429145.2010.513484.
  • Das, S.K., Rafiqul Islam, A.T.M., 2018. Effects of salinity on germination and seedling growth of lentil (Lens culinaris Medik.) varieties in Bangladesh. Barishal University Journal, 5(1-2): 141-151.
  • Delahunty, A.J., 2021. Increasing lentil (Lens culinaris) adaptation to acute high temperature for arable cropping. PhD Thesis. The University of Melbourne, Faculty of Veterinary and Agricultural Sciences, p. 206, Melbourne.
  • Delahunty, A., Nuttall. J., Nicolas. M., Brand. J., 2015. Genotypic heat tolerance in lentil. Proceedings of the 17th ASA Conference, 20-24 September, Hobart, Australia.
  • Delahunty, A.J., Brand, J.D., Nuttall, J.G., 2023. Field screening of lentil (Lens culinaris) for high-temperature tolerance. Agronomy 2023, 13(7): 1-21. doi: 10.3390/agronomy13071753.
  • Driedonks, N., Rieu, I., Vriezen, W.H., 2016. Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod, 29: 67-79. doi: 10.1007/s00497-016-0275-9.
  • El haddad, N., Rajendran, K., Smouni, A., Es-Safi, N.E., Benbrahim, N., Mentag, R., Nayyar, H., Maalouf, F., Kumar, S., 2020. Screening the FIGS set of lentil (Lens culinaris Medikus) germplasm for tolerance to terminal heat and combined drought-heat stress. Agronomy, 10(20): 1-27. doi: 10.3390/agronomy10071036.
  • Farshadfar, E., Poursiahbidi, M.M., Safavi, S.M., 2018. Assessment of drought tolerance in land races of bread wheat based on resistance/tolerance indices. International journal of Advanced Biological and Biomedical Research, 6(4): 233-245.
  • Fernandez, G.C.J., 1992. Effective selection criteria for assessing plant stress tolerance. Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, 257–270, 13–16 August, Taiwan.
  • Fischer, R. A., Maurer, R., 1978. Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5): 897-912. doi: 10.1071/AR9780897.
  • Gupta, P.C., 1993. Seed vigour testing. ‘‘Alınmıştır: Handbook of Seed Testing. (ed) Agrawal, P.K., New Delhi, 242-249.
  • Hamza, F.E.A., Idris, A.E., Elagib, T.Y., Eltayeb, A.H., Adam, A.H.M., 2023. Evaluation of selection indices for heat tolerance and their correlation with yield in some chickpea (Cicer arietinum L.) genotypes of Sudan. Journal of Agronomy Research, 5(1): 1-15. doi: 10.14302/issn.2639-3166.jar-22-4403.
  • Hasan, M.A., Ahmed, J.U., Hossain, T., Hossain, M.M., Ullah, M.A., 2004. Germination characters and seed reserve mobilization during germination of different wheat genotypes under variable temperature regimes. Journal of the National Science Foundation of Sri Lanka, 32 (3-4): 97-107.
  • Kang, M.S., 1988. A rank-sum method for selecting high yielding, stable corn genotypes. Cereal Research Communications, 16(1-2): 113-115.
  • Kumar, V., Poonia, R.C., Chaudhary, K., 2018. Assessment of the seed vigour potential in different varieties of wheat. International Journal of Current Microbiology and Applied Sciences, 7(7): 354-361. doi: 10.20546/ijcmas.2018.707.043.
  • Lafond, G.P., Fowler, B.D., 1989. Soil temperature and water content, seeding depth, and simulated rainfall effects on winter wheat emergence. Agronomy Journal, 81(4): 609-614. doi: 10.2134/agronj1989.00021962008100040012x.
  • Lamba, K., Kumar, M., Singh, V., Chaudhary, L., Sharma, R., Yashveer, S., Dalal, S., 2023. Heat stress tolerance indices for identification of the heat tolerant wheat genotypes. Scientific Reports, 13(1): 1-13. doi: 10.1038/s41598-023-37634-8.
  • Lan, J., 1998. Comparison of evaluating methods for agronomic drought resistance in crops. Acta Agriculturae Boreali-occidentalis Sinica, 7: 85-87.
  • Longmei, N., Gill, G.K., Kumar, R., Zaidi, P.H., 2023. Selection indices for identifying heat tolerant of maize (Zea mays). The Indian Journal of Agricultural Sciences, 93(1): 46-50. doi: 10.56093/ijas.v93i1.108617.
  • Maestri, E., Klueva, N., Perrotta. C., Gulli, M., Nguyen, H.T., Marmiroli, N., 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant molecular biology, 48: 667-681.
  • Makkawi, M., El Balla, M., Bishaw, Z., van Gastel, A.J.G., 2008. Correlation and path coefficient analyses of laboratory tests as predictors of field emergence in lentil (Lens culinaris Medikus). Journal of New Seeds, 9 (4): 284-302. doi: 10.1080/15228860802308594.
  • Mitra, J., 2001. Genetics and genetic improvement of drought resistance in crop plants. Current Science, 80(6): 758-763.
  • Ozkan, H., Yagbasanlar, T., Genc, I., 1998. Tolerance and stability studies on durum wheat under drought and heat stress conditions. Cereal Research Communication, 26(4): 405-412.
  • Öztürk, A., Dumlu, A., Kartay, H., 2024. Mercimek çeşitlerinin yüksek sıcaklıklara tepkileri: tohum çimlenmesi ve fide çıkışı. Türk Tarım ve Doğa Bilimleri Dergisi, 11(2): 442-453. doi: 10.30910/turkjans.1437147.
  • Paliwal, R., Roder, M.S., Kumar, U., Srivastava, J.P., Joshi, A.K., 2012. QTL mapping of terminal heat tolerance in hexaploid wheat (T. aestivum L.). Theoretical Applied Genetics, 125: 561-575. doi: 10.1007/s00122-012-1853-3.
  • Porch, T.G., 2006. Application of stress indices for heat tolerance screening of common bean. J. Agronomy and Crop Science, 192(5): 390-394. doi: 10.1111/j.1439-037X.2006.00229.x.
  • Poudel, P.B., Poudel, M.R., Puri, R.R., 2021. Evaluation of heat stress tolerance in spring wheat (Triticum aestivum L.) genotypes using stress tolerance indices in western region of Nepal. Journal of Agriculture and Food Research, 5: 1-6. doi: 10.1016/j.jafr.2021.100179.
  • Puri, R.R., Gautam, N.R., Joshi, A.K., 2015. Exploring stress tolerance indices to identify terminal heat tolerance in spring wheat in Nepal. Journal of Wheat Research, 7(1): 13-17.
  • Li, Q., Wang, Z., Li, D, Wei, J., Qiao, W., Meng, X, Sun, S., Li, H., Zhao, M., Chen, X., Zhao, F., 2018. Evaluation of a new method for quantification of heat tolerance in different wheat cultivars. Journal of Integrative Agriculture, 17(4): 786-795. doi: 10.1016/s2095-3119(17)61716-7.
  • Rich, S.M., Berger, J., Lawes, R., Fletcher, A., 2022. Chickpea and lentil show little genetic variation in emergence ability and rate from deep sowing, but small-sized seed produces less vigorous seedlings. Crop and Pasture Science, 73 (9): 1042-1055. doi: 10.1071/CP21673.
  • Rosielle, A.A., Hamblin, J., 1981. Theoretical aspects of selection for yield in stress and non-stress environments. Crop Science, 21(6): 943-946. doi: 10.2135/cropsci1981.0011183X002100060033x.
  • Singh, N.T., Dhaliwal, G.S., 1972. Effect of soil temperature on seedling emergence in different crops. Plant and Soil, 37: 441-444.
  • Sita, K., Sehgal, A., HanumanthaRao, B., Nair, R.M., Vara Prasad, P.V., Kumar, S., Gaur, P.M., Farooq, M., Siddique, K.H.M., Varshney, R.K., Nayyar, H., 2017. Food legumes and rising temperatures: Effects, adaptive functional mechanisms specific to reproductive growth stage and strategies to ımprove heat tolerance. Frontiers in Plant Science, 8: 1-30. doi: 10.3389/fpls.2017.01658.
  • Sunil, R., Chhabra, A.K., Yadav, R.K., Kumar, S., 2023. Assessment of chickpea (Cicer arietinum L.) genotypes under normal and late sown environments using stress ındices. Agricultural Science Digest. 43(6): 807-811. doi: 10.18805/ag.D-5317.
  • Tanveer, A., Rehman, A., Javaid, M.M., Abbas, R.N., Sibtain, M., Ahmad, A., Ibin Zamir, M.S., Chaudhary, K.M., Aziz, A., 2010. Allelopathic potential of Euphorbia helioscopia L. against wheat (Triticum aestivum L.), chickpea (Cicer arietinum L.) and lentil (Lens culinaris Medic.). Turkish Journal of Agriculture and Forestry, 34(1): 75-81. doi: 10.3906/tar-0903-53.
  • Venugopalan, V.K., Nath, R., Sengupta, K., Nalia, A., Banerjee, S., Chandran, M.A.S., Ibrahimova, U., Dessoky, E.S., Attia, A.O., Hassan, M.M., Hossain, A., 2021. The response of lentil (Lens culinaris Medik.) to soil moisture and heat stress under different dates of sowing and foliar application of micronutrients. Frontiers in Plant Science, 12: 1-16. doi: 10.3389/fpls.2021.679469.
  • Wahid, A., Gelani, S., Ashraf, M., Foolad, M.R., 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3):199-223. doi: 10.1016/j.envexpbot.2007.05.011.
  • Watt, M.S., Bloomberg, M., 2012. Key features of the seed germination response to high temperatures. New Phytologist, 196(2): 332-336.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Tahıllar ve Yemeklik Tane Baklagiller
Bölüm Anadolu Tarım Bilimleri Dergisi
Yazarlar

Ali Öztürk 0000-0001-7673-114X

Aleyna Dumlu 0000-0002-0976-2330

Hasan Kartay 0000-0002-0603-8478

Erken Görünüm Tarihi 26 Şubat 2025
Yayımlanma Tarihi 28 Şubat 2025
Gönderilme Tarihi 27 Eylül 2024
Kabul Tarihi 19 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 1

Kaynak Göster

APA Öztürk, A., Dumlu, A., & Kartay, H. (2025). Çimlenme ve Çıkış Dönemlerindeki Yüksek Sıcaklıklara Toleranslı Mercimek Çeşitlerinin Stres İndeksleri ve Rank Analizi ile Seçimi. Anadolu Tarım Bilimleri Dergisi, 40(1), 39-52. https://doi.org/10.7161/omuanajas.1557262
Online ISSN: 1308-8769