Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2022, Cilt: 39 Sayı: 1, 84 - 90, 01.01.2022

Öz

Kaynakça

  • 1. Bowman WC. Neuromuscular block. Br J Pharmacol. 2006;147: 277-86. doi:10.1038/sj.bjp.0706404.
  • 2. Baillard C. Incidence and complications of post operative residual paralysis. Ann Fr Anesth Reanim. 2009; 28 (2): 41-5. doi:10.1016/s0750-7658(09)72486-4.
  • 3. Kumar GV, Nair AP, Murthy HS, Jalaja KR, Ramachandra K, Parameshwara G. Residual neuromuscular blockade affects postoperative pulmonary function. Anesthesiology. 2012;117: 1234-44. doi: 10.1097/ALN.0b013e3182715b80.
  • 4. Kalkan Y, Tumkaya L, Bostan H, Tomak Y, Altuner D, Yilmaz A, Erdivanli B, Bedir R, Yalcin A, Turan A. Effect of sugammadex on rocuronium induced changes in pancreatic mast cells. Toxicol Ind Health. 2015; 31: 738-46. doi: 10.1177/0748233713484654.
  • 5. Geldner G, Niskanen M, Laurila P, Mizikov V, Hubler M, Beck G, Reitbergen H., Nicolayenko E. A randomised controlled trial comparing sugammadex and neostigmine at different depths of neuromuscular blockade in patients undergoing laparoscopic surgery. Anaesthesia. 2012; 67: 991-8. doi: 10.1111/j.1365-2044.2012.07197.x.
  • 6. Türk R, Kaya SE, Dönmez İ, Özaydın İ, Merhan O, Yayla S, Ermutlu CŞ, Kaçar C, Aydın U, Aksoy Ö, Hüseyinoğlu Ü. The effect of rocuronium and sugammaedex on progesterone levels in pregnant rabbits under general anesthesia. Kafkas Univ Vet Fak Derg. 2019; 25:179-84. doi: 10.9775/kvfd.2018.20609.
  • 7. Hunter JM. New neuromuscular blocking drugs. N Engl J Med 1995; 332: 1691–9.
  • 8. Pedersen T, Viby-Mogensen J, Ringsted C. Anaesthetic practice and postoperative pulmonary complication. Acta Anaesthesiol Scand 1992; 36: 812–18.
  • 9. Shorten GD. Postoperative residual curarisation: incidence, aetiology and associated morbidity. Anaesth Int Care 1993; 21: 782–9.
  • 10. Mencke T, Echternach M, Kleinschmidt S, et al. Laryngeal morbidity and quality of tracheal intubation: a randomized controlled trial. Anesthesiology 2003; 95: 1049–56.
  • 11. Herring WJ, Woo T, Assaid CA, Lupinacci RJ, Lemmens HJ, Blobner M, Khuenl-Brady KS. Sugammadex efficacy for reversal of rocuronium- and vecuronium-induced neuromuscular blockade: A pooled analysis of 26 studies. J Clin Anesth. 2017; 41: 84-91. doi: 10.1016/j.jclinane.2017.06.006.
  • 12. Gijsenbergh F, Ramael S, Houwing N, Van Iersel T. First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology. 2005; 103: 695-703. doi: 10.1097/00000542-200510000-00007.
  • 13. Sorgenfrei IF, Norrild K, Larsen PB, Stensballe J, Ostergaard D, Prins ME, Viby-Mogensen J. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: a dose-finding and safety study. Anesthesiology. 2006; 104: 667-74. doi: 10.1097/00000542-200604000-00009.
  • 14. Kalkan Y, Bostan H, Tumkaya L, Tomak Y, Bostan M, Yilmaz A, Turut H, Temiz A, Turan A. The effect of rocuronium, sugammadex, and their combination on cardiac muscle and diaphragmatic skeletal muscle cells. J Anesth. 2012; 26: 870-7. doi: 10.1007/s00540-012-1440-4.
  • 15. Staals LM, Snoeck MM, Driessen JJ, Van Hamersvelt HW, Flockton EA, Van Den Heuvel MW, Hunter JM. Reduced clearance of rocuronium and sugammadex in patients with severe to end-stage renal failure: a pharmacokinetic study. Br J Anaesth. 2010; 104: 31-9. doi: 10.1093/bja/aep340.
  • 16. Platt PR, Sadleir PH, Clarke RC. Sugammadex, rocuronium and mast cell numbers in the rat liver. Anaesthesia. 2013; 68(2):208-9. doi: 10.1111/anae.12106.
  • 17. Clarke RC, Sadleir PH, Platt PR. The role of sugammadex in the development and modification of an allergic response to rocuronium: evidence from a cutaneous model. Anaesthesia. 2012; 67: 266-73. doi: 10.1111/j.1365-2044.2011.06995.x.
  • 18. Leysen J, Bridts CH, De Clerck LS, Ebo DG. Rocuronium-induced anaphylaxis is probably not mitigated by sugammadex: evidence from an in vitro experiment. Anaesthesia. 2011; 66: 526-7. doi: 10.1111/j.1365-2044.2011.06729.x.
  • 19. Simsek T, Erbas M, Buyuk B, Pala C, Sahin H, Altinisik B. Prevention of rocuronium induced mast cell activation with prophylactic oleuropein rich diet in anesthetized rabbits. Acta Cir Bras. 2018; 33: 954-63. doi: 10.1590/s0102-865020180110000002.
  • 20. Yeşiltaş S, Orhon ZN, Cakır H, Dogru M, Çelik MG. Does Sugammadex Suppress Allergic Inflammation Due to Rocuronium in Animal Model of Rat? Allergol Immunopathol (Madr). 2021 May 1;49(3):91-99. doi: 10.15586/aei.v49i3.84.
  • 21. Kim YB, Choi JM, Chang YJ, Choi HR, In J, Yang HS. Effects of different sugammadex doses on the train of four ratio recovery progression during rocuronium induced neuromuscular blockade in the rat phrenic nerve hemidiaphragm. Korean J Anesthesiol. 2020 Jun;73(3):239-246. doi: 10.4097/kja.19278.
  • 22. Bostan H, Kalkan Y, Tomak Y, Tumkaya L, Altuner D, Yılmaz A, Erdivanli B, Bedir R. Reversal of rocuronium-induced neuromuscular block with sugammadex and resulting histopathological effects in rat kidneys. Ren Fail. 2011;33(10):1019-24. doi: 10.3109/0886022X.2011.618972.
  • 23. Pühringer FK, Rex C, Sielenkämper AW, Claudius C, Larsen PB, Prins ME, Eikermann M, Khuenl-Brady KS. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology. 2008;109(2):188-97. doi: 10.1097/ALN.0b013e31817f5bc7.
  • 24. Yalcin A, Aydin H, Turk A, Dogukan M, Eser N, Onderci M, Üçkardeş F, Yoldas A, Yılmaz E, Keles H. Vitamin D: An effective way to combat methotrexate-induced testis injury. Medicine, 2020;9(4):998-1003. doi: 10.5455/medscience.2020.10.222.
  • 25. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1): 271-8. doi: 10.1016/0003-2697(78)90342-1.
  • 26. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82(1): 70-7. doi: 10.1016/0003-9861(59)90090-6.
  • 27. Min KC, Lasseter KC, Marbury TC, Wrishko RE, Hanley WD, Wolford DG, Udo de Haes J, Reitmann C, Gutstein DE. Pharmacokinetics of sugammadex in subjects with moderate and severe renal impairment. Int J Clin Pharmacol Ther. 2017; 55: 746-52. doi: 10.5414/CP203025.
  • 28. Tomak Y, Yilmaz A, Bostan H, Tumkaya L, Altuner D, Kalkan Y, Erdivanlı B. Effects of sugammadex and rocuronium mast cell number and degranulation in rat liver. Anaesthesia. 2012; 67: 1101-4. doi: 10.1111/j.1365-2044.2012.07264.x.
  • 29. Yong CS, Li DX, Prabagar B, Park BC, Yi SJ, Yoo BK, Lyoo WS, Woo JS, Rhee JD, Kim JA, Choi HG. The effect of beta-cyclodextrin complexation on the bioavailability and hepatotoxicity of clotrimazole. Pharmazie. 2007; 62: 756-9.
  • 30. Yeh YL, Ting WJ, Kuo WW, Hsu HH, Lin YM, Shen CY, Chang CH, Padma VV, Tsai Y, Huang CY. San Huang Shel Shin Tang beta-cyclodextrin complex augmented the hepatoprotective effects against carbon tetrachloride-induced acute hepatotoxicity in rats. BMC Complement Altern Med. 2016; 16: 150. doi: 10.1186/s12906-016-1127-8.
  • 31. Marcolino AIP, Macedo LB, Nogueira-Librelotto DR, Vinardell MP, Rolim CMB, Mitjans M. Comparative evaluation of the hepatotoxicity, phototoxicity and photosensitizing potential of dronedarone hydrochloride and its cyclodextrin-based inclusion complexes. Photochem Photobiol Sci. 2019; 18: 1565-75. doi: 10.1039/c8pp00559a.
  • 32. Martin Del Valle EM. Cyclodextrins and their uses: A review. Process biochem. 2004; 39 (9): 1033-46.
  • 33. Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative-induced liver injuries: A review. J Cell Physiol. 2018; 233: 4015-32. doi: 10.1002/jcp.26209.
  • 34. Zhang C, Wang N, Xu Y, Tan HY, Li S, Feng Y. Molecular Mechanisms Involved in Oxidative Stress-Associated Liver Injury Induced by Chinese Herbal Medicine: An Experimental Evidence-Based Literature Review and Network Pharmacology Study. Int J Mol Sci. 2018; 19: 2745. doi: 10.3390/ijms19092745.
  • 35. Feng M, Ding J, Wang M, Zhang J, Zhu X, Guan W. Kupffer-derived matrix metalloproteinase-9 contributes to liver fibrosis resolution. Int J Biol Sci. 2018; 14: 1033-40. doi: 10.7150/ijbs.25589.
  • 36. Shati AA, Elsaid FG. Hepatotoxic effect of subacute vincristine administration activates necrosis and intrinsic apoptosis in rats: protective roles of broccoli and Indian mustard. Arch Physiol Biochem. 2019; 125: 1-11. doi: 10.1080/13813455.2018.1427765.
  • 37. Palanca JM, Aguirre-Rueda D, Granell MV, Aldasoro M, Garcia A, Iradi A, Obrador E, Mauricio MD, Vila J, Gil-Bisquert A, Valles SL. Sugammadex, a neuromuscular blockade reversal agent, causes neuronal apoptosis in primary cultures. Int J Med Sci. 2013; 10: 1278-85. doi: 10.7150/ijms.6254.
  • 38. Li J, Wu DD, Zhang JX, Wang J, Ma JJ, Hu X, Dong WG. Mitochondrial pathway mediated by reactive oxygen species involvement in alpha-hederin-induced apoptosis in hepatocellular carcinoma cells. World J Gastroenterol. 2018; 24: 1901-10. doi: 10.3748/wjg.v24.i17.1901.

Possible effects of some anaesthetic agents in rat hepatotoxicity: Histological and biochemical study

Yıl 2022, Cilt: 39 Sayı: 1, 84 - 90, 01.01.2022

Öz

Selectively steroidal neuromuscular blocking agents, such as rocuronium, are required to maintain surgical procedures. It is a sugammadex γ-cyclodextrin-derived drug that encapsulates these drugs and reverses its effects. In the present study, it was aimed to investigate the effects of sugammadex rocuronium complex on liver and possible toxic effects on hepatocytes using histopathological and biochemical methods. In the current study, 32 adult Sprague - Dawley male rats were used. Four groups were designed as pure control, control group, sugammadex and sugammadex-rocunorium. Following the experimental procedures, liver tissues extracted from rats were stained after routine histological procedures. The images were taken from the sections for histopathological evaluation. For biochemical analysis, glutathione (GSH) and malondialdehyde (MDA) enzymes were analyzed in the liver tissues. In the group treated with the sugammadex-rocunorium complex, caspase-3 expressions were observed to be higher than in other groups. In addition, while the amount of GSH belonging to sugammadex and sugammadex-rocunorium groups decreased compared to the control group, an increase in MDA amount was found. Sugammadex-rocunorium can lead to oxidative stress in the hepatocytes. However, more studies are needed to reveal the toxic effects of sugammadex and sugammadex and rocunorium complex in the liver.

Kaynakça

  • 1. Bowman WC. Neuromuscular block. Br J Pharmacol. 2006;147: 277-86. doi:10.1038/sj.bjp.0706404.
  • 2. Baillard C. Incidence and complications of post operative residual paralysis. Ann Fr Anesth Reanim. 2009; 28 (2): 41-5. doi:10.1016/s0750-7658(09)72486-4.
  • 3. Kumar GV, Nair AP, Murthy HS, Jalaja KR, Ramachandra K, Parameshwara G. Residual neuromuscular blockade affects postoperative pulmonary function. Anesthesiology. 2012;117: 1234-44. doi: 10.1097/ALN.0b013e3182715b80.
  • 4. Kalkan Y, Tumkaya L, Bostan H, Tomak Y, Altuner D, Yilmaz A, Erdivanli B, Bedir R, Yalcin A, Turan A. Effect of sugammadex on rocuronium induced changes in pancreatic mast cells. Toxicol Ind Health. 2015; 31: 738-46. doi: 10.1177/0748233713484654.
  • 5. Geldner G, Niskanen M, Laurila P, Mizikov V, Hubler M, Beck G, Reitbergen H., Nicolayenko E. A randomised controlled trial comparing sugammadex and neostigmine at different depths of neuromuscular blockade in patients undergoing laparoscopic surgery. Anaesthesia. 2012; 67: 991-8. doi: 10.1111/j.1365-2044.2012.07197.x.
  • 6. Türk R, Kaya SE, Dönmez İ, Özaydın İ, Merhan O, Yayla S, Ermutlu CŞ, Kaçar C, Aydın U, Aksoy Ö, Hüseyinoğlu Ü. The effect of rocuronium and sugammaedex on progesterone levels in pregnant rabbits under general anesthesia. Kafkas Univ Vet Fak Derg. 2019; 25:179-84. doi: 10.9775/kvfd.2018.20609.
  • 7. Hunter JM. New neuromuscular blocking drugs. N Engl J Med 1995; 332: 1691–9.
  • 8. Pedersen T, Viby-Mogensen J, Ringsted C. Anaesthetic practice and postoperative pulmonary complication. Acta Anaesthesiol Scand 1992; 36: 812–18.
  • 9. Shorten GD. Postoperative residual curarisation: incidence, aetiology and associated morbidity. Anaesth Int Care 1993; 21: 782–9.
  • 10. Mencke T, Echternach M, Kleinschmidt S, et al. Laryngeal morbidity and quality of tracheal intubation: a randomized controlled trial. Anesthesiology 2003; 95: 1049–56.
  • 11. Herring WJ, Woo T, Assaid CA, Lupinacci RJ, Lemmens HJ, Blobner M, Khuenl-Brady KS. Sugammadex efficacy for reversal of rocuronium- and vecuronium-induced neuromuscular blockade: A pooled analysis of 26 studies. J Clin Anesth. 2017; 41: 84-91. doi: 10.1016/j.jclinane.2017.06.006.
  • 12. Gijsenbergh F, Ramael S, Houwing N, Van Iersel T. First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology. 2005; 103: 695-703. doi: 10.1097/00000542-200510000-00007.
  • 13. Sorgenfrei IF, Norrild K, Larsen PB, Stensballe J, Ostergaard D, Prins ME, Viby-Mogensen J. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex: a dose-finding and safety study. Anesthesiology. 2006; 104: 667-74. doi: 10.1097/00000542-200604000-00009.
  • 14. Kalkan Y, Bostan H, Tumkaya L, Tomak Y, Bostan M, Yilmaz A, Turut H, Temiz A, Turan A. The effect of rocuronium, sugammadex, and their combination on cardiac muscle and diaphragmatic skeletal muscle cells. J Anesth. 2012; 26: 870-7. doi: 10.1007/s00540-012-1440-4.
  • 15. Staals LM, Snoeck MM, Driessen JJ, Van Hamersvelt HW, Flockton EA, Van Den Heuvel MW, Hunter JM. Reduced clearance of rocuronium and sugammadex in patients with severe to end-stage renal failure: a pharmacokinetic study. Br J Anaesth. 2010; 104: 31-9. doi: 10.1093/bja/aep340.
  • 16. Platt PR, Sadleir PH, Clarke RC. Sugammadex, rocuronium and mast cell numbers in the rat liver. Anaesthesia. 2013; 68(2):208-9. doi: 10.1111/anae.12106.
  • 17. Clarke RC, Sadleir PH, Platt PR. The role of sugammadex in the development and modification of an allergic response to rocuronium: evidence from a cutaneous model. Anaesthesia. 2012; 67: 266-73. doi: 10.1111/j.1365-2044.2011.06995.x.
  • 18. Leysen J, Bridts CH, De Clerck LS, Ebo DG. Rocuronium-induced anaphylaxis is probably not mitigated by sugammadex: evidence from an in vitro experiment. Anaesthesia. 2011; 66: 526-7. doi: 10.1111/j.1365-2044.2011.06729.x.
  • 19. Simsek T, Erbas M, Buyuk B, Pala C, Sahin H, Altinisik B. Prevention of rocuronium induced mast cell activation with prophylactic oleuropein rich diet in anesthetized rabbits. Acta Cir Bras. 2018; 33: 954-63. doi: 10.1590/s0102-865020180110000002.
  • 20. Yeşiltaş S, Orhon ZN, Cakır H, Dogru M, Çelik MG. Does Sugammadex Suppress Allergic Inflammation Due to Rocuronium in Animal Model of Rat? Allergol Immunopathol (Madr). 2021 May 1;49(3):91-99. doi: 10.15586/aei.v49i3.84.
  • 21. Kim YB, Choi JM, Chang YJ, Choi HR, In J, Yang HS. Effects of different sugammadex doses on the train of four ratio recovery progression during rocuronium induced neuromuscular blockade in the rat phrenic nerve hemidiaphragm. Korean J Anesthesiol. 2020 Jun;73(3):239-246. doi: 10.4097/kja.19278.
  • 22. Bostan H, Kalkan Y, Tomak Y, Tumkaya L, Altuner D, Yılmaz A, Erdivanli B, Bedir R. Reversal of rocuronium-induced neuromuscular block with sugammadex and resulting histopathological effects in rat kidneys. Ren Fail. 2011;33(10):1019-24. doi: 10.3109/0886022X.2011.618972.
  • 23. Pühringer FK, Rex C, Sielenkämper AW, Claudius C, Larsen PB, Prins ME, Eikermann M, Khuenl-Brady KS. Reversal of profound, high-dose rocuronium-induced neuromuscular blockade by sugammadex at two different time points: an international, multicenter, randomized, dose-finding, safety assessor-blinded, phase II trial. Anesthesiology. 2008;109(2):188-97. doi: 10.1097/ALN.0b013e31817f5bc7.
  • 24. Yalcin A, Aydin H, Turk A, Dogukan M, Eser N, Onderci M, Üçkardeş F, Yoldas A, Yılmaz E, Keles H. Vitamin D: An effective way to combat methotrexate-induced testis injury. Medicine, 2020;9(4):998-1003. doi: 10.5455/medscience.2020.10.222.
  • 25. Mihara M, Uchiyama M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978; 86(1): 271-8. doi: 10.1016/0003-2697(78)90342-1.
  • 26. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959; 82(1): 70-7. doi: 10.1016/0003-9861(59)90090-6.
  • 27. Min KC, Lasseter KC, Marbury TC, Wrishko RE, Hanley WD, Wolford DG, Udo de Haes J, Reitmann C, Gutstein DE. Pharmacokinetics of sugammadex in subjects with moderate and severe renal impairment. Int J Clin Pharmacol Ther. 2017; 55: 746-52. doi: 10.5414/CP203025.
  • 28. Tomak Y, Yilmaz A, Bostan H, Tumkaya L, Altuner D, Kalkan Y, Erdivanlı B. Effects of sugammadex and rocuronium mast cell number and degranulation in rat liver. Anaesthesia. 2012; 67: 1101-4. doi: 10.1111/j.1365-2044.2012.07264.x.
  • 29. Yong CS, Li DX, Prabagar B, Park BC, Yi SJ, Yoo BK, Lyoo WS, Woo JS, Rhee JD, Kim JA, Choi HG. The effect of beta-cyclodextrin complexation on the bioavailability and hepatotoxicity of clotrimazole. Pharmazie. 2007; 62: 756-9.
  • 30. Yeh YL, Ting WJ, Kuo WW, Hsu HH, Lin YM, Shen CY, Chang CH, Padma VV, Tsai Y, Huang CY. San Huang Shel Shin Tang beta-cyclodextrin complex augmented the hepatoprotective effects against carbon tetrachloride-induced acute hepatotoxicity in rats. BMC Complement Altern Med. 2016; 16: 150. doi: 10.1186/s12906-016-1127-8.
  • 31. Marcolino AIP, Macedo LB, Nogueira-Librelotto DR, Vinardell MP, Rolim CMB, Mitjans M. Comparative evaluation of the hepatotoxicity, phototoxicity and photosensitizing potential of dronedarone hydrochloride and its cyclodextrin-based inclusion complexes. Photochem Photobiol Sci. 2019; 18: 1565-75. doi: 10.1039/c8pp00559a.
  • 32. Martin Del Valle EM. Cyclodextrins and their uses: A review. Process biochem. 2004; 39 (9): 1033-46.
  • 33. Mortezaee K, Khanlarkhani N. Melatonin application in targeting oxidative-induced liver injuries: A review. J Cell Physiol. 2018; 233: 4015-32. doi: 10.1002/jcp.26209.
  • 34. Zhang C, Wang N, Xu Y, Tan HY, Li S, Feng Y. Molecular Mechanisms Involved in Oxidative Stress-Associated Liver Injury Induced by Chinese Herbal Medicine: An Experimental Evidence-Based Literature Review and Network Pharmacology Study. Int J Mol Sci. 2018; 19: 2745. doi: 10.3390/ijms19092745.
  • 35. Feng M, Ding J, Wang M, Zhang J, Zhu X, Guan W. Kupffer-derived matrix metalloproteinase-9 contributes to liver fibrosis resolution. Int J Biol Sci. 2018; 14: 1033-40. doi: 10.7150/ijbs.25589.
  • 36. Shati AA, Elsaid FG. Hepatotoxic effect of subacute vincristine administration activates necrosis and intrinsic apoptosis in rats: protective roles of broccoli and Indian mustard. Arch Physiol Biochem. 2019; 125: 1-11. doi: 10.1080/13813455.2018.1427765.
  • 37. Palanca JM, Aguirre-Rueda D, Granell MV, Aldasoro M, Garcia A, Iradi A, Obrador E, Mauricio MD, Vila J, Gil-Bisquert A, Valles SL. Sugammadex, a neuromuscular blockade reversal agent, causes neuronal apoptosis in primary cultures. Int J Med Sci. 2013; 10: 1278-85. doi: 10.7150/ijms.6254.
  • 38. Li J, Wu DD, Zhang JX, Wang J, Ma JJ, Hu X, Dong WG. Mitochondrial pathway mediated by reactive oxygen species involvement in alpha-hederin-induced apoptosis in hepatocellular carcinoma cells. World J Gastroenterol. 2018; 24: 1901-10. doi: 10.3748/wjg.v24.i17.1901.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Kurumları Yönetimi
Bölüm Clinical Research
Yazarlar

Ebru Annaç 0000-0001-9726-5846

Öznur Uludag 0000-0002-6017-5836

Zümrüt Doğan 0000-0001-7131-2317

Erken Görünüm Tarihi 3 Ocak 2022
Yayımlanma Tarihi 1 Ocak 2022
Gönderilme Tarihi 25 Mayıs 2021
Kabul Tarihi 23 Haziran 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 39 Sayı: 1

Kaynak Göster

APA Annaç, E., Uludag, Ö., & Doğan, Z. (2022). Possible effects of some anaesthetic agents in rat hepatotoxicity: Histological and biochemical study. Journal of Experimental and Clinical Medicine, 39(1), 84-90.
AMA Annaç E, Uludag Ö, Doğan Z. Possible effects of some anaesthetic agents in rat hepatotoxicity: Histological and biochemical study. J. Exp. Clin. Med. Ocak 2022;39(1):84-90.
Chicago Annaç, Ebru, Öznur Uludag, ve Zümrüt Doğan. “Possible Effects of Some Anaesthetic Agents in Rat Hepatotoxicity: Histological and Biochemical Study”. Journal of Experimental and Clinical Medicine 39, sy. 1 (Ocak 2022): 84-90.
EndNote Annaç E, Uludag Ö, Doğan Z (01 Ocak 2022) Possible effects of some anaesthetic agents in rat hepatotoxicity: Histological and biochemical study. Journal of Experimental and Clinical Medicine 39 1 84–90.
IEEE E. Annaç, Ö. Uludag, ve Z. Doğan, “Possible effects of some anaesthetic agents in rat hepatotoxicity: Histological and biochemical study”, J. Exp. Clin. Med., c. 39, sy. 1, ss. 84–90, 2022.
ISNAD Annaç, Ebru vd. “Possible Effects of Some Anaesthetic Agents in Rat Hepatotoxicity: Histological and Biochemical Study”. Journal of Experimental and Clinical Medicine 39/1 (Ocak 2022), 84-90.
JAMA Annaç E, Uludag Ö, Doğan Z. Possible effects of some anaesthetic agents in rat hepatotoxicity: Histological and biochemical study. J. Exp. Clin. Med. 2022;39:84–90.
MLA Annaç, Ebru vd. “Possible Effects of Some Anaesthetic Agents in Rat Hepatotoxicity: Histological and Biochemical Study”. Journal of Experimental and Clinical Medicine, c. 39, sy. 1, 2022, ss. 84-90.
Vancouver Annaç E, Uludag Ö, Doğan Z. Possible effects of some anaesthetic agents in rat hepatotoxicity: Histological and biochemical study. J. Exp. Clin. Med. 2022;39(1):84-90.