Çok Fazlı CoCuFeNiNb Yüksek Entropili Alaşımın Tribolojik ve Elektrokimyasal Özelliklerinin Değerlendirilmesi
Yıl 2024,
Cilt: 14 Sayı: 1, 176 - 190, 30.06.2024
Sefa Emre Sünbül
,
Kürşat İcin
Öz
Yüksek entropili alaşımlar (YEA'lar), son yıllarda yoğun araştırmalara konu olmuş ve farklı endüstriyel uygulamalara yönelik potansiyel göstermektedir. Bu çalışma, CoCuFeNiNb alaşımının yapısal, tribolojik ve elektrokimyasal özelliklerini incelemektedir. Alaşım, Ar atmosferinde vakumlu ark eritme yöntemi ile hazırlanmış ve XRD, SEM, EDX, aşınma ve korozyon analizleri ile karakterize edilmiştir. Aşınma testleri ve korozyon deneyleri, alaşımın tribolojik ve elektrokimyasal performansını değerlendirmiştir. Bulgular, alaşımın YMK, HMK ve Laves fazlarından oluştuğunu göstermektedir. CoCuFeNiNb yüksek entropili alaşımının sürtünme katsayısı, 0.25 MPa, 0.5 MPa ve 1 MPa yük altında sırasıyla 0.28, 0.5 ve 0.78 olarak artış göstermiştir. Aşınma yüzeyinde düşük basınçta abrazyon izleri, orta basınçta delaminasyon tabakaları ve yüksek basınçta plastik deformasyon bölgeleri gözlemlenmiştir. CoCuFeNiNb alaşımının %3,5 NaCl çözeltisindeki korozyon potansiyeli -0,236 V ve korozyon akım yoğunluğu 1,89×10⁻⁵ A/cm² olarak belirlenmiştir.
Proje Numarası
FAY-2023-10562 and FBA-2024-11177
Kaynakça
- Agrawal, P., Gupta, S., Shukla, S., Nene, S. S., Thapliyal, S., Toll, M. P., & Mishra, R. S. (2022). Role of Cu addition in enhancing strength-ductility synergy in transforming high entropy alloy. Materials & Design, 215, 110487. https://doi.org/10.1016/j.matdes.2022.110487
- Cao, B. X., Wang, C., Yang, T., & Liu, C. T. (2020). Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Materialia, 187, 250-255. https://doi.org/10.1016/j.scriptamat.2020.06.008
- Chen, T. K., Shun, T. T., Yeh, J. W., & Wong, M. S. (2004). Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [Article]. Surface and Coatings Technology, 188-189(1-3 SPEC.ISS.), 193-200. https://doi.org/10.1016/j.surfcoat.2004.08.023
- Chen, X.-g., Qin, G., Gao, X.-f., Chen, R.-r., Song, Q., & Cui, H.-z. (2022). Strengthening CoCrFeNi high-entropy alloy by Laves and boride phases. China Foundry, 19(6), 457-463. https://doi.org/10.1007/s41230-022-1007-4
- Cheng, Z., Wang, S., Wu, G., Gao, J., Yang, X., & Wu, H. (2022). Tribological properties of high-entropy alloys: A review. International Journal of Minerals, Metallurgy and Materials, 29(3), 389-403. https://doi.org/10.1007/s12613-021-2373-4
- Dada, M., Popoola, P., & Mathe, N. (2023). Recent advances of high entropy alloys for aerospace applications: A review. World Journal of Engineering, 20(1), 43-74. https://doi.org/10.1108/WJE-01-2021-0040
- Dewangan, S. K., Mangish, A., Kumar, S., Sharma, A., Ahn, B., & Kumar, V. (2022). A review on High-Temperature Applicability: A milestone for high entropy alloys. Engineering Science and Technology, an International Journal, 35, 101211. https://doi.org/10.1016/j.jestch.2022.101211
- Du, C., Hu, L., Pan, Q., Chen, K., Zhou, P., & Wang, G. (2022). Effect of Cu on the strengthening and embrittling of an FeCoNiCr-xCu HEA. Materials Science and Engineering: A, 832, 142413. https://doi.org/10.1016/j.msea.2021.142413
- Evangeline, A., Sathiya, P., & Arivazhagan, B. (2020). Laves Phase Formation and Segregation of Nb in Ni–Cr–Mo Superalloy over 316L by Hot Wire (HW) TIG Cladding Process. Arabian Journal for Science and Engineering, 45(11), 9685-9698. https://doi.org/10.1007/s13369-020-04873-0
- Freudenberger, J., Botcharova, E., & Schultz, L. (2004). Formation of the microstructure in Cu-Nb alloys. Journal of Materials Science, 39(16), 5343-5345. https://doi.org/10.1023/B:JMSC.0000039241.01005.c6
- Hu, J., Yang, K., Wang, Q., Zhao, Q. C., Jiang, Y. H., & Liu, Y. J. (2024). Ultra-long life fatigue behavior of a high-entropy alloy. International Journal of Fatigue, 178, 108013. https://doi.org/10.1016/j.ijfatigue.2023.108013
- Kai-Le, W., Wen-Kui, Y., Xin-Cheng, S., Hua, H., & Yu-Hong, Z. (2023). Phase field method to study the mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy. Acta Physica Sinica, 72. https://doi.org/10.7498/aps.72.20222439
- Liu, C., Gao, Y., Chong, K., Guo, F., Wu, D., & Zou, Y. (2023). Effect of Nb content on the microstructure and corrosion resistance of FeCoCrNiNbx high-entropy alloys in chloride ion environment. Journal of Alloys and Compounds, 935, 168013. https://doi.org/10.1016/j.jallcom.2022.168013
- Liu, W. H., He, J. Y., Huang, H. L., Wang, H., Lu, Z. P., & Liu, C. T. (2015). Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 60, 1-8. https://doi.org/10.1016/j.intermet.2015.01.004
- Malatji, N., Popoola, A. P. I., Lengopeng, T., & Pityana, S. (2020). Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy. International Journal of Minerals, Metallurgy and Materials, 27(10), 1332-1340. https://doi.org/10.1007/s12613-020-2178-x
- Man, J., Wu, B., Duan, G., Zhang, L., Wan, G., Zhang, L., Zou, N., & Liu, Y. (2022). The synergistic addition of Al, Ti, Mo and W to strengthen the equimolar CoCrFeNi high-entropy alloy via thermal-mechanical processing. Journal of Alloys and Compounds, 902, 163774. https://doi.org/10.1016/j.jallcom.2022.163774
- Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511. https://doi.org/10.1016/j.actamat.2016.08.081
- Mukanov, S., Loginov, P., Fedotov, A., Bychkova, M., Antonyuk, M., & Levashov, E. (2023). The effect of copper on the microstructure, wear and corrosion resistance of cocrcufeni high-entropy alloys manufactured by powder metallurgy. Materials, 16(3), 1178. https://doi.org/10.3390/ma16031178
- Park, H. J., Na, Y. S., Hong, S. H., Kim, J. T., Kim, Y. S., Lim, K. R., Park, J. M., & Kim, K. B. (2016). Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys. Metals and Materials International, 22(4), 551-556.https:/doi.org/10.1007/s12540-016-6034-5
- Qin, G., Li, Z., Chen, R., Zheng, H., Fan, C., Wang, L., Su, Y., Ding, H., Guo, J., & Fu, H. (2019). CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements. Journal of Materials Research, 34(6), 1011-1020. https://doi.org/10.1557/jmr.2018.468
- Rashidy Ahmady, A., Ekhlasi, A., Nouri, A., Haghbin Nazarpak, M., Gong, P., & Solouk, A. (2023). High entropy alloy coatings for biomedical applications: A review. Smart Materials in Manufacturing, 1, 100009. https://doi.org/10.1016/j.smmf.2022.100009
Sonar, T., Ivanov, M., Trofimov, E., Tingaev, A., & Suleymanova, I. (2024). An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications. Materials Science for Energy Technologies, 7, 35-60. https://doi.org/10.1016/j.mset.2023.07.004
- Sunkari, U., Reddy, S. R., Athira, K. S., Chatterjee, S., & Bhattacharjee, P. P. (2020). Effect of niobium alloying on the microstructure, phase stability and mechanical properties of CoCrFeNi2.1Nbx high entropy alloys: Experimentation and thermodynamic modeling. Materials Science and Engineering: A, 793, 139897. https://doi.org/10.1016/j.msea.2020.139897
- Verma, V., Belcher, C. H., Apelian, D., & Lavernia, E. J. (2024). Diffusion in high entropy alloy systems – A review. Progress in Materials Science, 142, 101245. https://doi.org/10.1016/j.pmatsci.2024.101245
- Wang, H., He, Q., Gao, X., Shang, Y., Zhu, W., Zhao, W., Chen, Z., Gong, H., & Yang, Y. (2024). Multifunctional High Entropy Alloys Enabled by Severe Lattice Distortion. Advanced Materials, 36(17), 2305453. https://doi.org/10.1002/adma.202305453
- Wang, L., Zhang, L., Lu, X., Wu, F., Sun, X., Zhao, H., & Li, Q. (2023). Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage. Chemical Engineering Journal, 465, 142766. https://doi.org/10.1016/j.cej.2023.142766
- Wang, Z., Lan, N., Zhang, Y., & Deng, W. (2022). Microstructure and properties of MAO-Cu/Cu-(HEA)N composite coatings on titanium alloy. Coatings, 12(12), 1877. https://doi.org/10.3390/coatings12121877
- Wu, H., Zhang, S., Wu, C. L., Zhang, C. H., Sun, X. Y., & Bai, X. L. (2023). Electrochemical corrosion behavior in sulfuric acid solution and dry sliding friction and wear properties of laser-cladded CoCrFeNiNbx high entropy alloy coatings. Surface and Coatings Technology, 460, 129425. https://doi.org/10.1016/j.surfcoat.2023.129425
- Wu, T., Yu, L., Chen, G., Wang, R., Xue, Y., Lu, Y., & Luan, B. (2023). Effects of Mo and Nb on the microstructure and high temperature oxidation behaviors of CoCrFeNi-based high entropy alloys. Journal of Materials Research and Technology, 27, 1537-1549. https://doi.org/10.1016/j.jmrt.2023.10.058
- Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Zhang, Y., Xue, J., Yan, S., & Wang, Y. (2015). Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Materials Science and Engineering: A, 648, 15-22. https://doi.org/10.1016/j.msea.2015.09.034
- Ye, W., Zhou, Q., Shi, Y., Xie, M., Chen, B., Wang, H., & Liu, W. (2024). Robust wear performance of graphene-reinforced high entropy alloy composites. Carbon, 224, 119040. https://doi.org/10.1016/j.carbon.2024.119040
- Ye, X., Diao, Z., Lei, H., Wang, L., Li, Z., Li, B., Feng, J., Chen, J., Liu, X., & Fang, D. (2024). Multi-phase FCC-based composite eutectic high entropy alloy with multi-scale microstructure. Materials Science and Engineering: A, 889, 145815. https://doi.org/10.1016/j.msea.2023.145815
- Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., & Chang, S. Y. (2004). Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6(5), 299-303. https://doi.org/10.1002/adem.200300567
- Yu, B., Ren, Y., Zeng, Y., Ma, W., Morita, K., Zhan, S., Lei, Y., Lv, G., Li, S., & Wu, J. (2024). Recent progress in high-entropy alloys: A focused review of preparation processes and properties. Journal of Materials Research and Technology, 29, 2689-2719. https://doi.org/10.1016/j.jmrt.2024.01.246
- Zareipour, F., Shahmir, H., & Huang, Y. (2024). Formation and significance of topologically close-packed Laves phases in refractory high-entropy alloys. Journal of Alloys and Compounds, 986, 174148. https://doi.org/10.1016/j.jallcom.2024.174148
- Zhang, C., Huang, L., Li, S., Li, K., Lu, S., & Li, J. (2023). Improved corrosion resistance of laser melting deposited CoCrFeNi-series high-entropy alloys by Al addition. Corrosion Science, 225, 111599. https://doi.org/10.1016/j.corsci.2023.111599
- Zhang, F., Xiang, C., Han, E.-H., & Zhang, Z. (2022). Effect of Nb Content on Microstructure and Mechanical Properties of Mo0.25V0.25Ti1.5Zr0.5Nbx High-Entropy Alloys. Acta Metallurgica Sinica (English Letters), 35(10), 1641-1652. https://doi.org/10.1007/s40195-022-01399-2
- Zhang, X., Yu, Y., Ren, B., Liu, Z., Li, T., Wang, L., & Qiao, Z. (2023). Design of a novel CoCrFeNiCu0.3 high entropy alloy with desirable mechanical, corrosion and anti-bacterial properties via adjusting Cu distribution. Materials Today Communications, 35, 105946. https://doi.org/10.1016/j.mtcomm.2023.105946
Evaluation of Tribological and Electrochemical Properties of Multiphase CoCuFeNiNb High Entropy Alloy
Yıl 2024,
Cilt: 14 Sayı: 1, 176 - 190, 30.06.2024
Sefa Emre Sünbül
,
Kürşat İcin
Öz
Recent research has heavily focused on high entropy alloys (HEAs) due to their promising potential for diverse industrial applications. This study investigates the CoCuFeNiNb alloy, analyzing its structural, tribological, and electrochemical characteristics. The alloy was synthesized using vacuum arc melting in an argon environment and was subsequently examined through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), wear testing, and corrosion analysis. The tribological and electrochemical performances were assessed through wear and corrosion experiments. The results reveal that the alloy contains FCC, BCC, and Laves phases. The coefficient of friction for the CoCuFeNiNb high entropy alloy increased to 0.28, 0.5, and 0.78 under loads of 0.25 MPa, 0.5 MPa, and 1 MPa, respectively. Observations of the wear surface showed abrasion wear at low pressure, delamination layers at medium pressure, and plastic deformation zones at high pressure. In a 3.5 wt% NaCl solution, the alloy exhibited a corrosion potential of -0.236 V and a corrosion current density of 1.89×10⁻⁵ A/cm².
Etik Beyan
There are no ethical problems regarding the publication of this paper.
Destekleyen Kurum
Karadeniz Teknik Üniversitesi
Proje Numarası
FAY-2023-10562 and FBA-2024-11177
Teşekkür
Current study was supported by Karadeniz Technical University Scientific Research Projects Unit with the projects numbered FAY-2023-10562 and FBA-2024-11177. The authors would like to thank the relevant unit for their support.
Kaynakça
- Agrawal, P., Gupta, S., Shukla, S., Nene, S. S., Thapliyal, S., Toll, M. P., & Mishra, R. S. (2022). Role of Cu addition in enhancing strength-ductility synergy in transforming high entropy alloy. Materials & Design, 215, 110487. https://doi.org/10.1016/j.matdes.2022.110487
- Cao, B. X., Wang, C., Yang, T., & Liu, C. T. (2020). Cocktail effects in understanding the stability and properties of face-centered-cubic high-entropy alloys at ambient and cryogenic temperatures. Scripta Materialia, 187, 250-255. https://doi.org/10.1016/j.scriptamat.2020.06.008
- Chen, T. K., Shun, T. T., Yeh, J. W., & Wong, M. S. (2004). Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering [Article]. Surface and Coatings Technology, 188-189(1-3 SPEC.ISS.), 193-200. https://doi.org/10.1016/j.surfcoat.2004.08.023
- Chen, X.-g., Qin, G., Gao, X.-f., Chen, R.-r., Song, Q., & Cui, H.-z. (2022). Strengthening CoCrFeNi high-entropy alloy by Laves and boride phases. China Foundry, 19(6), 457-463. https://doi.org/10.1007/s41230-022-1007-4
- Cheng, Z., Wang, S., Wu, G., Gao, J., Yang, X., & Wu, H. (2022). Tribological properties of high-entropy alloys: A review. International Journal of Minerals, Metallurgy and Materials, 29(3), 389-403. https://doi.org/10.1007/s12613-021-2373-4
- Dada, M., Popoola, P., & Mathe, N. (2023). Recent advances of high entropy alloys for aerospace applications: A review. World Journal of Engineering, 20(1), 43-74. https://doi.org/10.1108/WJE-01-2021-0040
- Dewangan, S. K., Mangish, A., Kumar, S., Sharma, A., Ahn, B., & Kumar, V. (2022). A review on High-Temperature Applicability: A milestone for high entropy alloys. Engineering Science and Technology, an International Journal, 35, 101211. https://doi.org/10.1016/j.jestch.2022.101211
- Du, C., Hu, L., Pan, Q., Chen, K., Zhou, P., & Wang, G. (2022). Effect of Cu on the strengthening and embrittling of an FeCoNiCr-xCu HEA. Materials Science and Engineering: A, 832, 142413. https://doi.org/10.1016/j.msea.2021.142413
- Evangeline, A., Sathiya, P., & Arivazhagan, B. (2020). Laves Phase Formation and Segregation of Nb in Ni–Cr–Mo Superalloy over 316L by Hot Wire (HW) TIG Cladding Process. Arabian Journal for Science and Engineering, 45(11), 9685-9698. https://doi.org/10.1007/s13369-020-04873-0
- Freudenberger, J., Botcharova, E., & Schultz, L. (2004). Formation of the microstructure in Cu-Nb alloys. Journal of Materials Science, 39(16), 5343-5345. https://doi.org/10.1023/B:JMSC.0000039241.01005.c6
- Hu, J., Yang, K., Wang, Q., Zhao, Q. C., Jiang, Y. H., & Liu, Y. J. (2024). Ultra-long life fatigue behavior of a high-entropy alloy. International Journal of Fatigue, 178, 108013. https://doi.org/10.1016/j.ijfatigue.2023.108013
- Kai-Le, W., Wen-Kui, Y., Xin-Cheng, S., Hua, H., & Yu-Hong, Z. (2023). Phase field method to study the mechanism of Cu-rich phase precipitation in AlxCuMnNiFe high-entropy alloy. Acta Physica Sinica, 72. https://doi.org/10.7498/aps.72.20222439
- Liu, C., Gao, Y., Chong, K., Guo, F., Wu, D., & Zou, Y. (2023). Effect of Nb content on the microstructure and corrosion resistance of FeCoCrNiNbx high-entropy alloys in chloride ion environment. Journal of Alloys and Compounds, 935, 168013. https://doi.org/10.1016/j.jallcom.2022.168013
- Liu, W. H., He, J. Y., Huang, H. L., Wang, H., Lu, Z. P., & Liu, C. T. (2015). Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 60, 1-8. https://doi.org/10.1016/j.intermet.2015.01.004
- Malatji, N., Popoola, A. P. I., Lengopeng, T., & Pityana, S. (2020). Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy. International Journal of Minerals, Metallurgy and Materials, 27(10), 1332-1340. https://doi.org/10.1007/s12613-020-2178-x
- Man, J., Wu, B., Duan, G., Zhang, L., Wan, G., Zhang, L., Zou, N., & Liu, Y. (2022). The synergistic addition of Al, Ti, Mo and W to strengthen the equimolar CoCrFeNi high-entropy alloy via thermal-mechanical processing. Journal of Alloys and Compounds, 902, 163774. https://doi.org/10.1016/j.jallcom.2022.163774
- Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511. https://doi.org/10.1016/j.actamat.2016.08.081
- Mukanov, S., Loginov, P., Fedotov, A., Bychkova, M., Antonyuk, M., & Levashov, E. (2023). The effect of copper on the microstructure, wear and corrosion resistance of cocrcufeni high-entropy alloys manufactured by powder metallurgy. Materials, 16(3), 1178. https://doi.org/10.3390/ma16031178
- Park, H. J., Na, Y. S., Hong, S. H., Kim, J. T., Kim, Y. S., Lim, K. R., Park, J. M., & Kim, K. B. (2016). Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys. Metals and Materials International, 22(4), 551-556.https:/doi.org/10.1007/s12540-016-6034-5
- Qin, G., Li, Z., Chen, R., Zheng, H., Fan, C., Wang, L., Su, Y., Ding, H., Guo, J., & Fu, H. (2019). CoCrFeMnNi high-entropy alloys reinforced with Laves phase by adding Nb and Ti elements. Journal of Materials Research, 34(6), 1011-1020. https://doi.org/10.1557/jmr.2018.468
- Rashidy Ahmady, A., Ekhlasi, A., Nouri, A., Haghbin Nazarpak, M., Gong, P., & Solouk, A. (2023). High entropy alloy coatings for biomedical applications: A review. Smart Materials in Manufacturing, 1, 100009. https://doi.org/10.1016/j.smmf.2022.100009
Sonar, T., Ivanov, M., Trofimov, E., Tingaev, A., & Suleymanova, I. (2024). An overview of microstructure, mechanical properties and processing of high entropy alloys and its future perspectives in aeroengine applications. Materials Science for Energy Technologies, 7, 35-60. https://doi.org/10.1016/j.mset.2023.07.004
- Sunkari, U., Reddy, S. R., Athira, K. S., Chatterjee, S., & Bhattacharjee, P. P. (2020). Effect of niobium alloying on the microstructure, phase stability and mechanical properties of CoCrFeNi2.1Nbx high entropy alloys: Experimentation and thermodynamic modeling. Materials Science and Engineering: A, 793, 139897. https://doi.org/10.1016/j.msea.2020.139897
- Verma, V., Belcher, C. H., Apelian, D., & Lavernia, E. J. (2024). Diffusion in high entropy alloy systems – A review. Progress in Materials Science, 142, 101245. https://doi.org/10.1016/j.pmatsci.2024.101245
- Wang, H., He, Q., Gao, X., Shang, Y., Zhu, W., Zhao, W., Chen, Z., Gong, H., & Yang, Y. (2024). Multifunctional High Entropy Alloys Enabled by Severe Lattice Distortion. Advanced Materials, 36(17), 2305453. https://doi.org/10.1002/adma.202305453
- Wang, L., Zhang, L., Lu, X., Wu, F., Sun, X., Zhao, H., & Li, Q. (2023). Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage. Chemical Engineering Journal, 465, 142766. https://doi.org/10.1016/j.cej.2023.142766
- Wang, Z., Lan, N., Zhang, Y., & Deng, W. (2022). Microstructure and properties of MAO-Cu/Cu-(HEA)N composite coatings on titanium alloy. Coatings, 12(12), 1877. https://doi.org/10.3390/coatings12121877
- Wu, H., Zhang, S., Wu, C. L., Zhang, C. H., Sun, X. Y., & Bai, X. L. (2023). Electrochemical corrosion behavior in sulfuric acid solution and dry sliding friction and wear properties of laser-cladded CoCrFeNiNbx high entropy alloy coatings. Surface and Coatings Technology, 460, 129425. https://doi.org/10.1016/j.surfcoat.2023.129425
- Wu, T., Yu, L., Chen, G., Wang, R., Xue, Y., Lu, Y., & Luan, B. (2023). Effects of Mo and Nb on the microstructure and high temperature oxidation behaviors of CoCrFeNi-based high entropy alloys. Journal of Materials Research and Technology, 27, 1537-1549. https://doi.org/10.1016/j.jmrt.2023.10.058
- Yang, T., Xia, S., Liu, S., Wang, C., Liu, S., Zhang, Y., Xue, J., Yan, S., & Wang, Y. (2015). Effects of AL addition on microstructure and mechanical properties of AlxCoCrFeNi High-entropy alloy. Materials Science and Engineering: A, 648, 15-22. https://doi.org/10.1016/j.msea.2015.09.034
- Ye, W., Zhou, Q., Shi, Y., Xie, M., Chen, B., Wang, H., & Liu, W. (2024). Robust wear performance of graphene-reinforced high entropy alloy composites. Carbon, 224, 119040. https://doi.org/10.1016/j.carbon.2024.119040
- Ye, X., Diao, Z., Lei, H., Wang, L., Li, Z., Li, B., Feng, J., Chen, J., Liu, X., & Fang, D. (2024). Multi-phase FCC-based composite eutectic high entropy alloy with multi-scale microstructure. Materials Science and Engineering: A, 889, 145815. https://doi.org/10.1016/j.msea.2023.145815
- Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C. H., & Chang, S. Y. (2004). Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6(5), 299-303. https://doi.org/10.1002/adem.200300567
- Yu, B., Ren, Y., Zeng, Y., Ma, W., Morita, K., Zhan, S., Lei, Y., Lv, G., Li, S., & Wu, J. (2024). Recent progress in high-entropy alloys: A focused review of preparation processes and properties. Journal of Materials Research and Technology, 29, 2689-2719. https://doi.org/10.1016/j.jmrt.2024.01.246
- Zareipour, F., Shahmir, H., & Huang, Y. (2024). Formation and significance of topologically close-packed Laves phases in refractory high-entropy alloys. Journal of Alloys and Compounds, 986, 174148. https://doi.org/10.1016/j.jallcom.2024.174148
- Zhang, C., Huang, L., Li, S., Li, K., Lu, S., & Li, J. (2023). Improved corrosion resistance of laser melting deposited CoCrFeNi-series high-entropy alloys by Al addition. Corrosion Science, 225, 111599. https://doi.org/10.1016/j.corsci.2023.111599
- Zhang, F., Xiang, C., Han, E.-H., & Zhang, Z. (2022). Effect of Nb Content on Microstructure and Mechanical Properties of Mo0.25V0.25Ti1.5Zr0.5Nbx High-Entropy Alloys. Acta Metallurgica Sinica (English Letters), 35(10), 1641-1652. https://doi.org/10.1007/s40195-022-01399-2
- Zhang, X., Yu, Y., Ren, B., Liu, Z., Li, T., Wang, L., & Qiao, Z. (2023). Design of a novel CoCrFeNiCu0.3 high entropy alloy with desirable mechanical, corrosion and anti-bacterial properties via adjusting Cu distribution. Materials Today Communications, 35, 105946. https://doi.org/10.1016/j.mtcomm.2023.105946