Araştırma Makalesi
BibTex RIS Kaynak Göster

Düşük etkili kentleşme uygulaması: Biyotutmanın hidrolojik performansının deneysel modellerle araştırılması

Yıl 2017, Cilt: 23 Sayı: 9, 1041 - 1048, 29.12.2017

Öz

Su
kaynaklarının ekonomik, sosyal ve çevresel açıdan en verimli şekilde
kullanılması, canlı hayatın sürdürülebilmesi için kaçınılmazdır. Özellikle
kentleşme ile birlikte betonlaşma ve buna paralel olarak topraktaki geçirimsiz
yüzey artmakta, toprakta meydana gelen sızma azalmakta ve yağış sonucu yüzeyde
toplanan fazla su hızlı bir şekilde akışa geçerek taşkına neden olmaktadır.
Kentleşme ile beraber toprağa sızamayan su, doğal arıtım olan topraktan mahrum
kalmakta ve yüzeyde biriken kirliliği doğrudan su kaynaklarına taşımaktadır. Bu
durum su kalitesini olumsuz yönde etkilemekte ve su kirliliğine neden
olmaktadır. Bu çerçevede, çevresel sürdürülebilirliğin sağlanması, su kaynaklarının
korunması ve kentleşmenin çevre ve su kaynakları üzerindeki olumsuz etkilerinin
azaltılması için yeni hidrolojik yöntemlere ihtiyaç duyulmaktadır. Bu çalışma
kapsamında, kentleşme sonucu arazi kullanımında meydana gelen değişimler ile
artan yüzeysel akış ve su kirliliğini önlemek için Düşük Etkili Kentleşme (DEK)
tipi En İyi Yönetim Uygulamaları (EİYU) incelenmiştir. Yüksek yüzeysel akış ve
yayılı kirlilik kaynaklarının olumsuz etkilerini azaltmak için kullanılan bir
yağmur suyu yönetimi uygulaması ve DEK çeşidi olan “biyotutma” araştırılmıştır.
Bu amaçla kurulmuş olan bir deney düzeneği ile biyotutmanın hidrolojik
verimliliği ve performansı gözlemlenmiştir. Yapılan deney sonuçları değerlendirilerek
biyotutmanın pik debinin azalması üzerine etkisi incelenmiştir. Biyotutma
kolonlarında kullanılan malzemelerin mekanik özellikleri incelenmiştir. Elde
edilen sonuçlar değerlendirildiğinde malzeme tipi ve özelliklerinin biyotutma
kolonlarında suyun tutulmasında etkili olduğu görülmüştür. Kum içeriğinin fazla
olması ile kolonlardaki çıkış debisinin arttığı ve ince taneli malzemelerin
artması ile azaldığı gözlemlenmiştir.

Kaynakça

  • Jennings DB, Jarnagin, ST. “Changes in anthropogenic impervious surfaces, precipitation and Daily streamflow discharge: A historical perspective in a mid-Atlantic subwatershed”. Landscape Ecology, 17(5), 471–489, 2002.
  • Davis AP. “Field Performance of Bioretention: Hydrology Impacts”. Journal of Hydrologic Engineering, 13(2), 90-95, 2008.
  • Davis AP, Hunt W, Traver R, Clarn M. “Bioretention technology: Overview of current practice and future needs”. Journal of Environmental Engineering, 135(3), 109–117, 2009.
  • Suriya S, Mudgal BV. “Impact of urbanization on flooding: The Thirusoolam sub watershed-A case study”. Journal of Hydrology, 412, 210–219, 2012.
  • Zhang S, Guo Y. “Stormwater Capture Efficiency of Bioretention Systems”. Water Resources Management, 28 (1), 149–168, 2014.
  • Gülbaz S, Kazezyılmaz Alhan CM. “Investigating Effects of Low Impact Development on Surface Runoff and TSS with a Calibrated Hydrodynamic Model”. Houille Blanche-Revue Internationale De L Eau, 3, 77–84, 2014.
  • Brown RA, Hunt WF. “Underdrain configuration to enhance Bioretention exfiltration to reduce pollutant loads”. Journal Environmental Engineering, 137(11), 1082–1091, 2011.
  • Trowsdale SA, Simcock R. “Urban stormwater treatment using bioretention”. Journal of Hydrology, 397 (3-4), 167–174, 2011.
  • Li H, Davis AP. “Water quality improvement through reductions of pollutant loads using bioretention”. Journal of Environmental Engineering, 135(8), 567–576, 2009.
  • Davis AP. “Green engineering principles promote low impact development”. Environmental Science and Technology, 39(16), 338A–344A, 2005.
  • Dietz ME. “Low impact development practices: A review of current research and recommendations for future directions”. Water Air Soil Pollution, 186(1-4), 351–363, 2007.
  • Shafique M, Kim R. “Low Impact Development Practices: a Review of Current Research and Recommendations for Future Directions”. Ecological Chemistry And Engineering S-Chemia I Inzynieria Ekologiczna S, 22(4), 543-563, 2015.
  • Coffman L, Green R, Clar M, Bitter S. “Development of Bioretention practices for stormwater management”. 20th Anniversary Conference-Water Management in the '90s: A Time for Innovation, Washington, United States of America, 1-5 May 1993.
  • Lucas WC, Sample DJ. “Reducing combined sewer overflows by using outlet controls for Green Stormwater Infrastructure: Case study in Richmond, Virginia”. Journal of Hydrology, 520, 473-488, 2015.
  • Olszewski J, Davis A. “Comparing the hydrologic performance of a bioretention cell with predevelopment values”. Journal of Irrigation and Drainage Engineering, 139(2), 124-130, 2013.
  • Brown RA, Hunt WF. “Improwing bioretention/biofiltration performance with restorative maintenance”. Water Science and Technology, 65(2), 361-367, 2012.
  • Brown R A, Skaggs RW, Hunt WF. “Calibration and validation of DRAINMOD to model bioretention hydrology”. Journal of Hydrology, 486, 430–442, 2013.
  • Haifeng J, Yuwen L, Shaw LY, Yurong C. “Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village”. Separation and Purification Technology, 84 (SI), 112–119, 2012.
  • Chen CF, Sheng MY, Chang CL, Kang SF, Lin JY. “Application of the SUSTAIN Model to a Watershed-Scale Case for Water Quality Management”. Water, 6(12), 3575-3589, 2014.
  • Davis AP, Shokouhian M, Sharma H, Minami C, Winogradoff D. “Water Quality Improvement through Bioretention: Lead, Copper, and Zinc Removal”. Water Environmental Resources, 75(1), 73-82, 2003.
  • Nichols P, Lucke T. “Evaluatıon of the Long-Term Pollution Removal Performance of Established Bioretention Cells”. International Journal of Geomate, 11(24), 2363-2369, 2016.
  • Kadıoğlu M. “Küresel İklim Değişimi ve Türkiye”. Sel-Heyelan-Çığ Sempozyumu, Samsun, Türkiye, 29-31 Mayıs 2007.
  • Özoral E. “Taşkın Koruma Faaliyetlerinde Memba ve Mansap Planlanması ve Yukarı Havza Önlemleri”. Sel-Heyelan-Çığ Sempozyumu, Samsun, Türkiye, 29-31 Mayıs 2007.
  • Gülbaz S, Kazezyılmaz Alhan CM. “Calibrated Hydrodynamic Model for Sazlıdere Watershed in Istanbul and Investigation of Urbanization Effects”. Journal of Hydrologic Engineering, 18(1), 75–84, 2013.
  • Jia H, Lu Y, Yu SL, Chen Y. “Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village”. Separation and Purification Technology, 84(SI), 112–119, 2012.
  • Tillinghast ED, Hunt WF, Jennings GD. “Stormwater control measure (SCM) design standards to limit stream erosion for Piedmont North Carolina”. Journal of Hydrology, 411(3-4), 185–196, 2011.
  • Gülbaz S, Kazezyılmaz Alhan CM. “Experimental Investigation on Hydrologic Performance of LID with Rainfall-Watershed-Bioretention System”. Journal of Hydrologic Engineering, 22(1), D4016003, 2017.
  • Lee J, Hyun K, Choi J, Yoon Y, Geronimo, FKF. “Flood reduction analysis on watershed of LID design demonstration district using SWMM5”. Desalination and Water Treatment, 38(1-3), 326–332, 2012.
  • Hsieh C, Davis AP. “Evaluation and Optimization of Bioretention Media for Treatment of Urban Storm Water Runoff”. Journal of Environmental Engineering, 131(11), 1521-1531, 2005. Prince George's County Department of Environmental Resources (PGDER), Design Manual for Use of Bioretention in Storm water Management. Division of Environmental Management, Watershed Protection Branch. Landover, MD, 1993.
  • Allen TP. “Bioretention Design under the 2009 Drainage Design and Erosion Control Manual”. Volume V – Stormwater BMPs. Drainage Manual Thurston County Water Resources Division Resource Stewardship Department, 2010. Gülbaz S. Yağış-Havza-Biyotutma Sisteminin Hidrolojik-Su Kalitesi Modellemesi ve Deneysel Olarak İncelenmesi. Doktora tezi, İstanbul Üniversitesi. İstanbul, Türkiye, 2015.

Low impact development implementation: Investigation on the hydrologic performance of bioretention via experimental models

Yıl 2017, Cilt: 23 Sayı: 9, 1041 - 1048, 29.12.2017

Öz

Efficient
use of water is vital for economic, social and environmental sustainability of
water resources. Especially, urbanization and thus high imperviousness results
in a decrease in infiltration and percolation. Consequently, surface runoff
generated over the surface increases tremendously and results in floods.
Surface runoff also washes off the pollutants that are built up on the surface
during dry days which results in poor water quality. Therefore, new methods in
hydrology are necessary for environmental sustainability, protection of water
resources, and mitigation of impacts of urbanization on environment and water
resources. In this study, Low Impact Development (LID) Best Management
Practices (BMP) are investigated in order to prevent high surface runoff and
water pollution due to land use change caused by urbanization. Bioretention,
which is a LID type of storm water management practice, is investigated to
mitigate impacts of high surface runoff and nonpoint source pollution. For this
purpose, an experimental set-up is developed to observe the hydrologic
efficiency and performance of bioretention. Performance of bioretention on peak
flow decrease is observed by evaluating experimental results. The mechanical
properties of materials used in bioretention columns are investigated. It is
observed that the material type and properties are effective in retaining water
in bioretention. As the sand content increases, the outflow at the exit of the
column also increases and if the fine grained material increases, the outflow
at the exit of the column decreases.

Kaynakça

  • Jennings DB, Jarnagin, ST. “Changes in anthropogenic impervious surfaces, precipitation and Daily streamflow discharge: A historical perspective in a mid-Atlantic subwatershed”. Landscape Ecology, 17(5), 471–489, 2002.
  • Davis AP. “Field Performance of Bioretention: Hydrology Impacts”. Journal of Hydrologic Engineering, 13(2), 90-95, 2008.
  • Davis AP, Hunt W, Traver R, Clarn M. “Bioretention technology: Overview of current practice and future needs”. Journal of Environmental Engineering, 135(3), 109–117, 2009.
  • Suriya S, Mudgal BV. “Impact of urbanization on flooding: The Thirusoolam sub watershed-A case study”. Journal of Hydrology, 412, 210–219, 2012.
  • Zhang S, Guo Y. “Stormwater Capture Efficiency of Bioretention Systems”. Water Resources Management, 28 (1), 149–168, 2014.
  • Gülbaz S, Kazezyılmaz Alhan CM. “Investigating Effects of Low Impact Development on Surface Runoff and TSS with a Calibrated Hydrodynamic Model”. Houille Blanche-Revue Internationale De L Eau, 3, 77–84, 2014.
  • Brown RA, Hunt WF. “Underdrain configuration to enhance Bioretention exfiltration to reduce pollutant loads”. Journal Environmental Engineering, 137(11), 1082–1091, 2011.
  • Trowsdale SA, Simcock R. “Urban stormwater treatment using bioretention”. Journal of Hydrology, 397 (3-4), 167–174, 2011.
  • Li H, Davis AP. “Water quality improvement through reductions of pollutant loads using bioretention”. Journal of Environmental Engineering, 135(8), 567–576, 2009.
  • Davis AP. “Green engineering principles promote low impact development”. Environmental Science and Technology, 39(16), 338A–344A, 2005.
  • Dietz ME. “Low impact development practices: A review of current research and recommendations for future directions”. Water Air Soil Pollution, 186(1-4), 351–363, 2007.
  • Shafique M, Kim R. “Low Impact Development Practices: a Review of Current Research and Recommendations for Future Directions”. Ecological Chemistry And Engineering S-Chemia I Inzynieria Ekologiczna S, 22(4), 543-563, 2015.
  • Coffman L, Green R, Clar M, Bitter S. “Development of Bioretention practices for stormwater management”. 20th Anniversary Conference-Water Management in the '90s: A Time for Innovation, Washington, United States of America, 1-5 May 1993.
  • Lucas WC, Sample DJ. “Reducing combined sewer overflows by using outlet controls for Green Stormwater Infrastructure: Case study in Richmond, Virginia”. Journal of Hydrology, 520, 473-488, 2015.
  • Olszewski J, Davis A. “Comparing the hydrologic performance of a bioretention cell with predevelopment values”. Journal of Irrigation and Drainage Engineering, 139(2), 124-130, 2013.
  • Brown RA, Hunt WF. “Improwing bioretention/biofiltration performance with restorative maintenance”. Water Science and Technology, 65(2), 361-367, 2012.
  • Brown R A, Skaggs RW, Hunt WF. “Calibration and validation of DRAINMOD to model bioretention hydrology”. Journal of Hydrology, 486, 430–442, 2013.
  • Haifeng J, Yuwen L, Shaw LY, Yurong C. “Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village”. Separation and Purification Technology, 84 (SI), 112–119, 2012.
  • Chen CF, Sheng MY, Chang CL, Kang SF, Lin JY. “Application of the SUSTAIN Model to a Watershed-Scale Case for Water Quality Management”. Water, 6(12), 3575-3589, 2014.
  • Davis AP, Shokouhian M, Sharma H, Minami C, Winogradoff D. “Water Quality Improvement through Bioretention: Lead, Copper, and Zinc Removal”. Water Environmental Resources, 75(1), 73-82, 2003.
  • Nichols P, Lucke T. “Evaluatıon of the Long-Term Pollution Removal Performance of Established Bioretention Cells”. International Journal of Geomate, 11(24), 2363-2369, 2016.
  • Kadıoğlu M. “Küresel İklim Değişimi ve Türkiye”. Sel-Heyelan-Çığ Sempozyumu, Samsun, Türkiye, 29-31 Mayıs 2007.
  • Özoral E. “Taşkın Koruma Faaliyetlerinde Memba ve Mansap Planlanması ve Yukarı Havza Önlemleri”. Sel-Heyelan-Çığ Sempozyumu, Samsun, Türkiye, 29-31 Mayıs 2007.
  • Gülbaz S, Kazezyılmaz Alhan CM. “Calibrated Hydrodynamic Model for Sazlıdere Watershed in Istanbul and Investigation of Urbanization Effects”. Journal of Hydrologic Engineering, 18(1), 75–84, 2013.
  • Jia H, Lu Y, Yu SL, Chen Y. “Planning of LID–BMPs for urban runoff control: The case of Beijing Olympic Village”. Separation and Purification Technology, 84(SI), 112–119, 2012.
  • Tillinghast ED, Hunt WF, Jennings GD. “Stormwater control measure (SCM) design standards to limit stream erosion for Piedmont North Carolina”. Journal of Hydrology, 411(3-4), 185–196, 2011.
  • Gülbaz S, Kazezyılmaz Alhan CM. “Experimental Investigation on Hydrologic Performance of LID with Rainfall-Watershed-Bioretention System”. Journal of Hydrologic Engineering, 22(1), D4016003, 2017.
  • Lee J, Hyun K, Choi J, Yoon Y, Geronimo, FKF. “Flood reduction analysis on watershed of LID design demonstration district using SWMM5”. Desalination and Water Treatment, 38(1-3), 326–332, 2012.
  • Hsieh C, Davis AP. “Evaluation and Optimization of Bioretention Media for Treatment of Urban Storm Water Runoff”. Journal of Environmental Engineering, 131(11), 1521-1531, 2005. Prince George's County Department of Environmental Resources (PGDER), Design Manual for Use of Bioretention in Storm water Management. Division of Environmental Management, Watershed Protection Branch. Landover, MD, 1993.
  • Allen TP. “Bioretention Design under the 2009 Drainage Design and Erosion Control Manual”. Volume V – Stormwater BMPs. Drainage Manual Thurston County Water Resources Division Resource Stewardship Department, 2010. Gülbaz S. Yağış-Havza-Biyotutma Sisteminin Hidrolojik-Su Kalitesi Modellemesi ve Deneysel Olarak İncelenmesi. Doktora tezi, İstanbul Üniversitesi. İstanbul, Türkiye, 2015.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Özel Sayı
Yazarlar

Sezar Gülbaz 0000-0002-2274-6896

Cevza Melek Kazezyılmaz-alhan 0000-0002-7362-5170

Yayımlanma Tarihi 29 Aralık 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 23 Sayı: 9

Kaynak Göster

APA Gülbaz, S., & Kazezyılmaz-alhan, C. M. (2017). Düşük etkili kentleşme uygulaması: Biyotutmanın hidrolojik performansının deneysel modellerle araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(9), 1041-1048.
AMA Gülbaz S, Kazezyılmaz-alhan CM. Düşük etkili kentleşme uygulaması: Biyotutmanın hidrolojik performansının deneysel modellerle araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Aralık 2017;23(9):1041-1048.
Chicago Gülbaz, Sezar, ve Cevza Melek Kazezyılmaz-alhan. “Düşük Etkili kentleşme uygulaması: Biyotutmanın Hidrolojik performansının Deneysel Modellerle araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23, sy. 9 (Aralık 2017): 1041-48.
EndNote Gülbaz S, Kazezyılmaz-alhan CM (01 Aralık 2017) Düşük etkili kentleşme uygulaması: Biyotutmanın hidrolojik performansının deneysel modellerle araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23 9 1041–1048.
IEEE S. Gülbaz ve C. M. Kazezyılmaz-alhan, “Düşük etkili kentleşme uygulaması: Biyotutmanın hidrolojik performansının deneysel modellerle araştırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 23, sy. 9, ss. 1041–1048, 2017.
ISNAD Gülbaz, Sezar - Kazezyılmaz-alhan, Cevza Melek. “Düşük Etkili kentleşme uygulaması: Biyotutmanın Hidrolojik performansının Deneysel Modellerle araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 23/9 (Aralık 2017), 1041-1048.
JAMA Gülbaz S, Kazezyılmaz-alhan CM. Düşük etkili kentleşme uygulaması: Biyotutmanın hidrolojik performansının deneysel modellerle araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23:1041–1048.
MLA Gülbaz, Sezar ve Cevza Melek Kazezyılmaz-alhan. “Düşük Etkili kentleşme uygulaması: Biyotutmanın Hidrolojik performansının Deneysel Modellerle araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 23, sy. 9, 2017, ss. 1041-8.
Vancouver Gülbaz S, Kazezyılmaz-alhan CM. Düşük etkili kentleşme uygulaması: Biyotutmanın hidrolojik performansının deneysel modellerle araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2017;23(9):1041-8.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.