Araştırma Makalesi
BibTex RIS Kaynak Göster

Etkin epoklar ile motor hayaline dayalı EEG işaretlerinin sınıflandırma doğruluğunun artırılması

Yıl 2018, Cilt: 24 Sayı: 5, 817 - 823, 12.10.2018

Öz

Beyin
bilgisayar arayüzleri (BBA) sadece beyinde üretilen işaretleri kullanarak
çeşitli elektronik cihazları kullanmayı olanaklı hale getiren sistemlerdir. Bu sistemlerin yüksek başarımlı olabilmesi için bu
işaretlerden çıkarılan öznitelik yöntemleri ve bu işaretlere uygulanan
sınıflandırıcı yöntemleri önemlidir. Bu çalışma ile motor hayaline dair
kaydedilen EEG tabanlı BBA işaretlerinden yüksek sınıflandırma doğruluğu elde
edebilmek için işaretlerin etkin zaman dilimlerinden çıkarılmış özniteliklerle
sınıflandırma doğruluğunun artırılmasına yönelik bir yöntem önerilmiştir.
Öznitelikler, etkin zaman dilimleri belirlenen EEG işaretlerine Hilbert
Dönüşümü’nün uygulanması ve işaretin türevlerinin ortalamasının alınmasıyla elde
edilmiştir. BCI Competition 2003 yarışmasında kullanıma sunulmuş 2-sınıflı
motor hareketi hayaline dayalı Data Set Ia isimli veri kümesinden çıkarılan
öznitelikler destek vektör makineleri, k-en yakın komşuluk ve doğrusal ayrım
analizi ile test edilerek performans karşılaştırması yapılmıştır. Destek vektör
makineleri ile test veri kümesi üzerinde %91.46 oranında yüksek bir
sınıflandırma doğruluğu elde edilmiştir. Bu sınıflandırma doğruluğu EEG
işaretinin bir denemesine ait tüm örneklemelerin kullanılması durumunda elde
edilen sınıflandırma doğruluğundan %17.40 daha yüksektir. Elde edilen sonuçlar,
önerilen yöntemin belirlenen öznitelik çıkarma yöntemi ve destek vektör
makinaları sınıflandırıcısıyla birlikte EEG işaretlerinden elde edilen
sınıflandırma doğruluğunu dikkat çekici miktarda arttırdığını ve hesaplama
karmaşıklığını ise azalttığını göstermiştir.

Kaynakça

  • Ma X, Huang X, Shen Y, Qin Z, Ge Y, Chen Y. “EEG based topography analysis in string recognition task”. Physica A: Statistical Mechanics and its Applications, 469, 531-539, 2017.
  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, and Vaughan TM. “Brain–computer interfaces for communication and control”. Clinical Neurophysiology, 113(6), 767-791, 2002.
  • Li Y, Long J, Yu T, Yu Z, Wang C, Zhang H, Guan C. “An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential”. IEEE Transactions on Biomedical Engineering, 57(10), 2495-2505, 2010.
  • Lotte F, Congedo M, Lécuyer A, Lamarche F, and Arnaldi B. “A review of classification algorithms for EEG-based brain–computer interfaces”. Journal of Neural Engineering, 4(2), 1-13, 2007.
  • Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G and Wolpaw JR. “Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface”. Neurology, 64(10), 1775-1777, 2005.
  • Oh SH, Lee YR, Kim HN. “A novel EEG feature extraction method using Hjorth parameter”. International Journal of Electronics and Electrical Engineering, 2(2), 106-110, 2014.
  • Jenke R, Peer A, Buss M. “Feature extraction and selection for emotion recognition from EEG”. IEEE Transactions on Affective Computing, 5(3), 327-339.
  • Siuly S, Li Y. “Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal Classification”. Computer Methods and Programs in Biomedicine, 119(1), 29-42, 2015.
  • Hsu WY, Lin CH, Hsu HJ, Chen PH, Chen IR. “Wavelet-based envelope features with automatic EOG artifact removal: Application to single-trial EEG data”. Expert Systems with Applications, 39(3), 2743-2749, 2012.
  • Hsu WY. “Fuzzy Hopfield neural network clustering for single-trial motor imagery EEG Classification”. Expert Systems with Applications, 39(1), 1055-1061, 2012.
  • Asensio-Cubero J, Gan JQ, Palaniappan R. “Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing”. Biomedical Signal Processing and Control, 8(6), 772-778, 2013.
  • Aydemir Ö. “Common spatial pattern based feature extraction from the best time segment of BCI data System”. Turkish Journal of Electrical Engineering and Computer Sciences, 6, 33, 2015.
  • Hsu WY. “EEG-based motor imagery classification using enhanced active segment selection and adaptive classifier”. Computers in Biology and Medicine, 41(8), 633-639, 2011.
  • Han R, Wei Q. “Joint selection of time and frequency segments for classifying multiclass EEG data in motor imagery based BCIs”. International Conference on in Fuzzy Systems and Knowledge Discovery, Zhangjiajie, China, 15-17 August 2015.
  • Mensh B. “BCI competition 2003 Results”. http:/ida.first.fhg.de/projects/bci/competition/results (19.02.2016)
  • Mensh BD, Werfel J, Seung HS. “BCI competition 2003-data set Ia: combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals”. IEEE Transactions on Biomedical Engineering, 51(6), 1052-1056, 2004.
  • Sun S, Zhang C. “Assessing features for electroencephalographic signal categorization”. IEEE International Conference on Acoustics, Speech and Signal Processing, Philadelphia, USA, 23-23 March 2005.
  • Wang B, Jun L, Bai J, Peng L, Li G, Li Y. “EEG recognition based on multiple types of information by using wavelet packet transform and neural networks”. In 2005 IEEE Engineering in Medicine and Biology, Shanghai, China, 17-18 January 2006.
  • Ting W, Guo-zheng Y, Bang-hua Y, Hong S. “EEG feature extraction based on wavelet packet decomposition for brain computer interface”. Measurement, 41(6), 618-625, 2008.
  • Duan L, Zhong H, Miao J, Yang Z, Ma W, Zhang X. “A voting optimized strategy based on ELM for improving classification of motor imagery BCI data”. Cognitive Computation, 6(3), 477-483, 2014.
  • Guo X, Zhao H, Li X, Li T, Dai M. “EEG signal analysis based on fixed-value shift compression algorithm”. In Natural Computation, Zhangjiajie, China, 15-17 August 2015.
  • Kayikcioglu T, Aydemir O. “A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data”. Pattern Recognition Letters, 31(11), 1207-1215, 2010.
  • Yavuz E, Aydemir Ö. “EEG tabanli beyin bilgisayar arayüzü işaretlerinin etkin zaman dilimlerinden çikarilmiş özniteliklerle siniflandirma doğruluklarinin artirilması”. XX. Biyomedikal Ulusal toplantısı, İzmir, Türkiye, 3-5 Kasım 2016.
  • Hahn SL. Hilbert Transforms in Signal Processing. Boston, London, Artech House, 1996.
  • Medl A, Flotzinger D, Pfurtscheller G. “Hilbert-transform based predictions of hand movements from EEG measurements”. In Engineering in Medicine and Biology Society, Paris, France, 29 October-1 November 1992.
  • Lyness JN, Moler CB. “Numerical differentiation of analytic functions”. SIAM Journal on Numerical Analysis, 4(2), 202-210, 1967.
  • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. “Support vector machine classification and validation of cancer tissue samples using microarray expression data”. Bioinformatics, 16(10), 906-914, 2000.
  • Panda R, Khobragade P S, Jambhule PD, Jengthe SN, Pal PR and Gandhi TK. “Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction”. In Systems in Medicine and Biology, Kharagpur, India, 16-18 December 2010.
  • Blankertz B, Muller KR, Curio G, Vaughan TM, Schalk G, Wolpaw JR, Schroder M. “The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single tras”. IEEE Transactions on Biomedical Engineering, 51(6), 1044-1051, 2004.

Improving classification accuracy of motor imagery EEG signals via effective epochs

Yıl 2018, Cilt: 24 Sayı: 5, 817 - 823, 12.10.2018

Öz

Brain
computer interfaces (BCI) are systems which make it possible to use various
electronic devices using only the signals produced in the brain.  In order to ensure high performance of these
systems, feature methods extracted from these signals and classifier methods
applied to these signals are important. With this study, we proposed a method
to obtain high classification accuracy from EEG based BBA signals recorded on
the motor imaginary with the extracted features in the active time segments.
Features were obtained by applying the Hilbert Transform to the active time
segments selected EEG signs and calculating the average of the derivatives of
the signs. Features extracted from two-class motor imaginary Data Set Ia
(Presented at the BCI Competition 2003 competition) were analyzed by support
vector machines, k-nearest neighborhood and linear discriminant analysis. Then
the performance of the classifiers was compared. A high classification accuracy
of 91.12% is calculated on the test dataset with support vector machines. This
classification accuracy is 17.06% higher than the classification accuracy
obtained in the case of using all samples of a trial of the EEG signal. As a
result, the proposed method increased the accuracy of classification in a
remarkable amount and reduced computational complexity with the feature
extraction methods and support vector machine classifier.

Kaynakça

  • Ma X, Huang X, Shen Y, Qin Z, Ge Y, Chen Y. “EEG based topography analysis in string recognition task”. Physica A: Statistical Mechanics and its Applications, 469, 531-539, 2017.
  • Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, and Vaughan TM. “Brain–computer interfaces for communication and control”. Clinical Neurophysiology, 113(6), 767-791, 2002.
  • Li Y, Long J, Yu T, Yu Z, Wang C, Zhang H, Guan C. “An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential”. IEEE Transactions on Biomedical Engineering, 57(10), 2495-2505, 2010.
  • Lotte F, Congedo M, Lécuyer A, Lamarche F, and Arnaldi B. “A review of classification algorithms for EEG-based brain–computer interfaces”. Journal of Neural Engineering, 4(2), 1-13, 2007.
  • Kübler A, Nijboer F, Mellinger J, Vaughan TM, Pawelzik H, Schalk G and Wolpaw JR. “Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface”. Neurology, 64(10), 1775-1777, 2005.
  • Oh SH, Lee YR, Kim HN. “A novel EEG feature extraction method using Hjorth parameter”. International Journal of Electronics and Electrical Engineering, 2(2), 106-110, 2014.
  • Jenke R, Peer A, Buss M. “Feature extraction and selection for emotion recognition from EEG”. IEEE Transactions on Affective Computing, 5(3), 327-339.
  • Siuly S, Li Y. “Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal Classification”. Computer Methods and Programs in Biomedicine, 119(1), 29-42, 2015.
  • Hsu WY, Lin CH, Hsu HJ, Chen PH, Chen IR. “Wavelet-based envelope features with automatic EOG artifact removal: Application to single-trial EEG data”. Expert Systems with Applications, 39(3), 2743-2749, 2012.
  • Hsu WY. “Fuzzy Hopfield neural network clustering for single-trial motor imagery EEG Classification”. Expert Systems with Applications, 39(1), 1055-1061, 2012.
  • Asensio-Cubero J, Gan JQ, Palaniappan R. “Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing”. Biomedical Signal Processing and Control, 8(6), 772-778, 2013.
  • Aydemir Ö. “Common spatial pattern based feature extraction from the best time segment of BCI data System”. Turkish Journal of Electrical Engineering and Computer Sciences, 6, 33, 2015.
  • Hsu WY. “EEG-based motor imagery classification using enhanced active segment selection and adaptive classifier”. Computers in Biology and Medicine, 41(8), 633-639, 2011.
  • Han R, Wei Q. “Joint selection of time and frequency segments for classifying multiclass EEG data in motor imagery based BCIs”. International Conference on in Fuzzy Systems and Knowledge Discovery, Zhangjiajie, China, 15-17 August 2015.
  • Mensh B. “BCI competition 2003 Results”. http:/ida.first.fhg.de/projects/bci/competition/results (19.02.2016)
  • Mensh BD, Werfel J, Seung HS. “BCI competition 2003-data set Ia: combining gamma-band power with slow cortical potentials to improve single-trial classification of electroencephalographic signals”. IEEE Transactions on Biomedical Engineering, 51(6), 1052-1056, 2004.
  • Sun S, Zhang C. “Assessing features for electroencephalographic signal categorization”. IEEE International Conference on Acoustics, Speech and Signal Processing, Philadelphia, USA, 23-23 March 2005.
  • Wang B, Jun L, Bai J, Peng L, Li G, Li Y. “EEG recognition based on multiple types of information by using wavelet packet transform and neural networks”. In 2005 IEEE Engineering in Medicine and Biology, Shanghai, China, 17-18 January 2006.
  • Ting W, Guo-zheng Y, Bang-hua Y, Hong S. “EEG feature extraction based on wavelet packet decomposition for brain computer interface”. Measurement, 41(6), 618-625, 2008.
  • Duan L, Zhong H, Miao J, Yang Z, Ma W, Zhang X. “A voting optimized strategy based on ELM for improving classification of motor imagery BCI data”. Cognitive Computation, 6(3), 477-483, 2014.
  • Guo X, Zhao H, Li X, Li T, Dai M. “EEG signal analysis based on fixed-value shift compression algorithm”. In Natural Computation, Zhangjiajie, China, 15-17 August 2015.
  • Kayikcioglu T, Aydemir O. “A polynomial fitting and k-NN based approach for improving classification of motor imagery BCI data”. Pattern Recognition Letters, 31(11), 1207-1215, 2010.
  • Yavuz E, Aydemir Ö. “EEG tabanli beyin bilgisayar arayüzü işaretlerinin etkin zaman dilimlerinden çikarilmiş özniteliklerle siniflandirma doğruluklarinin artirilması”. XX. Biyomedikal Ulusal toplantısı, İzmir, Türkiye, 3-5 Kasım 2016.
  • Hahn SL. Hilbert Transforms in Signal Processing. Boston, London, Artech House, 1996.
  • Medl A, Flotzinger D, Pfurtscheller G. “Hilbert-transform based predictions of hand movements from EEG measurements”. In Engineering in Medicine and Biology Society, Paris, France, 29 October-1 November 1992.
  • Lyness JN, Moler CB. “Numerical differentiation of analytic functions”. SIAM Journal on Numerical Analysis, 4(2), 202-210, 1967.
  • Furey TS, Cristianini N, Duffy N, Bednarski DW, Schummer M, Haussler D. “Support vector machine classification and validation of cancer tissue samples using microarray expression data”. Bioinformatics, 16(10), 906-914, 2000.
  • Panda R, Khobragade P S, Jambhule PD, Jengthe SN, Pal PR and Gandhi TK. “Classification of EEG signal using wavelet transform and support vector machine for epileptic seizure diction”. In Systems in Medicine and Biology, Kharagpur, India, 16-18 December 2010.
  • Blankertz B, Muller KR, Curio G, Vaughan TM, Schalk G, Wolpaw JR, Schroder M. “The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single tras”. IEEE Transactions on Biomedical Engineering, 51(6), 1044-1051, 2004.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Ebru Ergün Bu kişi benim 0000-0002-5371-7238

Önder Aydemir 0000-0002-1177-8518

Yayımlanma Tarihi 12 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 24 Sayı: 5

Kaynak Göster

APA Ergün, E., & Aydemir, Ö. (2018). Etkin epoklar ile motor hayaline dayalı EEG işaretlerinin sınıflandırma doğruluğunun artırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(5), 817-823.
AMA Ergün E, Aydemir Ö. Etkin epoklar ile motor hayaline dayalı EEG işaretlerinin sınıflandırma doğruluğunun artırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Ekim 2018;24(5):817-823.
Chicago Ergün, Ebru, ve Önder Aydemir. “Etkin Epoklar Ile Motor Hayaline Dayalı EEG işaretlerinin sınıflandırma doğruluğunun artırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24, sy. 5 (Ekim 2018): 817-23.
EndNote Ergün E, Aydemir Ö (01 Ekim 2018) Etkin epoklar ile motor hayaline dayalı EEG işaretlerinin sınıflandırma doğruluğunun artırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24 5 817–823.
IEEE E. Ergün ve Ö. Aydemir, “Etkin epoklar ile motor hayaline dayalı EEG işaretlerinin sınıflandırma doğruluğunun artırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 5, ss. 817–823, 2018.
ISNAD Ergün, Ebru - Aydemir, Önder. “Etkin Epoklar Ile Motor Hayaline Dayalı EEG işaretlerinin sınıflandırma doğruluğunun artırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 24/5 (Ekim 2018), 817-823.
JAMA Ergün E, Aydemir Ö. Etkin epoklar ile motor hayaline dayalı EEG işaretlerinin sınıflandırma doğruluğunun artırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24:817–823.
MLA Ergün, Ebru ve Önder Aydemir. “Etkin Epoklar Ile Motor Hayaline Dayalı EEG işaretlerinin sınıflandırma doğruluğunun artırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 24, sy. 5, 2018, ss. 817-23.
Vancouver Ergün E, Aydemir Ö. Etkin epoklar ile motor hayaline dayalı EEG işaretlerinin sınıflandırma doğruluğunun artırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2018;24(5):817-23.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.