Araştırma Makalesi
BibTex RIS Kaynak Göster

Gerçek bir sınav çizelgeleme problemi için iki aşamalı çözüm yaklaşımı

Yıl 2019, Cilt: 25 Sayı: 1, 71 - 81, 26.02.2019

Öz

Üniversitelerde,
ilgili fakültelerde veya bölümlerde sınav çizelgelerinin hazırlanması oldukça
uzun süreler alabilmekte, oluşturulan sınav çizelgeleri çoğu zaman ne
öğrencileri, ne öğretim üyelerini ne de yöneticileri memnun etmektedir. Bu
çalışmada bir üniversitenin bir bölümüne ait yılsonu sınavı çizelgesi oluşturma
problemi ele alınmıştır. Tanımlanan problem için, ilk aşamada sınavlar bir tam
sayılı programlama modeli ile zorluk derecelerine göre gruplandırılmıştır.
İkinci aşamada ise öğrencilerin çalışma ve odaklanabilme verimlerini en üst
düzeye çıkaracak sınav çizelgesini elde etmek üzere bir tam sayılı programlama
modeli geliştirilmiştir. Modelin amacı, aynı günde birden fazla sınava girme
durumu olan öğrenci sayısını, ilgili sınavların zorluk dereceleri toplamı ile
ağırlıklandırarak en küçüklemektir. Gerçek verilerden yola çıkarak bir öğretim
dönemi için veri kümesi oluşturulmuştur. Oluşturulan veri kümesi üzerinden
önerilen çözüm yaklaşımı uygulanarak çözümler alınmış ve elle yapılan
çizelgeyle karşılaştırılarak, önerilen yaklaşımla oluşturulan çizelgenin
üstünlükleri tartışılmıştır.

Kaynakça

  • Turabieh H, Abdullah S. “An integrated hybrid approach to the examination timetabling problem”. Omega, 39(6), 598-607, 2011.
  • Carter MW. “Or Practice-a survey of practical applications of examination timetabling algorithms”. Operations Research, 34(2), 193-202, 1986.
  • Burke E, Elliman D, Ford P, Weare R. Examination Timetabling in British Universities: A Survey. Editors: Burke E, Ross, P. Practice and Theory of Automated Timetabling, LNCS, 1153, 76-90, Berlin, Heidelberg, Springer, 1996.
  • Cowling P, Kendall G, Hussin NM. “A Survey and Case Study of Practical Examination Timetabling Problems”. 4th international Conference on the Practice and Theory of Automated Timetabling (PATAT 2002), Gent, Belgium, 21-23 August 2002.
  • Burke E, Jackson K, Kingston JH, Weare R. “Automated university timetabling: the state of the art”. The Computer Journal, 40(9), 565-571, 1997.
  • Qu R, Burke EK, McCollum B, Merlot LT, Lee SY. “A survey of search methodologies and automated system development for examination timetabling”. Journal of Scheduling, 12(1), 55-89, 2009.
  • Broder S. “Final examination scheduling”. Communications of the ACM, 7(8), 494-498, 1964.
  • Lotfi V, Cerveny R. “A final-exam-scheduling package”. Journal of the Operational Research Society, 42(3), 205-216, 1991.
  • Bullnheimer B. An Examination Scheduling Model to Maximize Students’ Study Time. Editors: Burke E, Carter M. Practice and Theory of Automated Timetabling II, LNCS, Vol. 1408, 78-91, Berlin, Heidelberg, Springer, 1998.
  • Wong T, Côté P, Gely P. “Final Exam Timetabling: A Practical Approach”. IEEE Canadian Conference on Electrical and Computer Engineering, (CCECE 2002), Manitoba, Canada, 12-15 May 2002.
  • Mushi AR. “Mathematical programming formulations for the examinations timetable problem: the case of the University Of Dar Es Salaam”. AJST, 5(2), 34-40, 2004.
  • MirHassani SA. “Improving paper spread in examination timetables using integer programming”. Applied Mathematics and Computation, 179(2), 702-706, 2006.
  • McCollum B, McMullan P, Parkes AJ, Burke EK, Qu R. “A new model for automated examination timetabling”. Annals of Operations Research, 194(1), 291-315, 2012.
  • Wang S, Bussieck M, Guignard M, Meeraus A, O’Brien F. “Term-end exam scheduling at United States Military Academy/West Point”. Journal of Scheduling, 13(4), 375-391, 2010.
  • Al-Yakoob SM, Sherali HD. “A mixed-integer programming approach to a class timetabling problem: a case study with gender policies and traffic considerations”. European Journal of Operational Research, 180(3), 1028-1044, 2007.
  • Kahar MNM, Kendall G. “The examination timetabling problem at Universiti Malaysia Pahang: comparison of a constructive heuristic with an existing software solution”. European Journal of Operational Research, 207(2), 557-565, 2010.
  • Ayob M, Hamdan AR, Abdullah S, Othman Z., Nazri MZA, Razak KA, ... Sabar NR. “Intelligent examination timetabling software”. Procedia-Social and Behavioral Sciences, 18, 600-608, 2011.
  • Komijan AR, Koupaei MN. “A new binary model for university examination timetabling: a case study”. Journal of Industrial Engineering International, 8(1), 1-7, 2012.
  • Ahmad F, Mohammad Z, Hassan H, Rose ANM, Muktar D. “Quadratic assignment approach for optimization of examination scheduling”. Applied Mathematical Sciences, 9(130), 6449-6460, 2015.
  • Koksalmış E, Gracia C, Rabadi G. “The optimal exam experience: a timetabling approach to prevent student cheating and fatigue”. International Journal of Operational Research, 21(3), 263-278, 2014.
  • Arbaoui T, Boufflet JP, Moukrim A. “A matheuristic for exam timetabling”. IFAC-PapersOnLine, 49(12), 1289-1294, 2016.
  • Cataldo A, Ferrer JC, Miranda J, Rey PA, Sauré A. “An integer programming approach to curriculum-based examination timetabling”. Annals of Operations Research, 258(2), 369-393, 2016.
  • Woumans G, De Boeck L, Beliën J, Creemers S. “A column generation approach for solving the examination-timetabling problem”. European Journal of Operational Research, 253(1), 178-194, 2016.
  • Cavdur F, Kose M. “A fuzzy logic and binary-goal programming-based approach for solving the exam timetabling problem to create a balanced-exam schedule”. International Journal of Fuzzy Systems, 18(1), 119-129, 2016.
  • Ergul Z, Kamisli Ozturk, Z. “A new mathematical model for multisession exams-building assignment”. Acta Physica Polonica A, 132(3), 1207-1210, 2017.
  • Sağlam B, Salman FS, Sayın S, Türkay M. “A mixed-integer programming approach to the clustering problem with an application in customer segmentation”. European Journal of Operational Research, 16, 173(3), 866-879, 2006.
  • ILOG, IBM. IBM ILOG CPLEX Optimization Studio, V12.6.2., 2013.

A two-phase solution approach for a real-life examination timetabling problem

Yıl 2019, Cilt: 25 Sayı: 1, 71 - 81, 26.02.2019

Öz

In the
faculties or departments of universities, preparing the examination timetables
takes quite a long time, and often could not satisfy neither the students nor
the instructors or managers. In this study, the final exam timetabling problem
of a department of a university is considered. For the problem, in the first
stage, the exams are classified into the groups according to their difficulty
levels by an integer programming model. In the second stage, an integer
programming model is proposed in order to find an exam timetable which will
increase the concentration and study efficiency of the students. In the model,
the
number of students taking more than one exam on the same
day is
minimized by
weighting
the difficulty levels of the relevant exams. The
proposed solution approach is applied by using a real data set of a semester.
By comparing the exam timetable obtained with the schedule prepared by hand,
the advantages of the proposed solution approach are presented.

Kaynakça

  • Turabieh H, Abdullah S. “An integrated hybrid approach to the examination timetabling problem”. Omega, 39(6), 598-607, 2011.
  • Carter MW. “Or Practice-a survey of practical applications of examination timetabling algorithms”. Operations Research, 34(2), 193-202, 1986.
  • Burke E, Elliman D, Ford P, Weare R. Examination Timetabling in British Universities: A Survey. Editors: Burke E, Ross, P. Practice and Theory of Automated Timetabling, LNCS, 1153, 76-90, Berlin, Heidelberg, Springer, 1996.
  • Cowling P, Kendall G, Hussin NM. “A Survey and Case Study of Practical Examination Timetabling Problems”. 4th international Conference on the Practice and Theory of Automated Timetabling (PATAT 2002), Gent, Belgium, 21-23 August 2002.
  • Burke E, Jackson K, Kingston JH, Weare R. “Automated university timetabling: the state of the art”. The Computer Journal, 40(9), 565-571, 1997.
  • Qu R, Burke EK, McCollum B, Merlot LT, Lee SY. “A survey of search methodologies and automated system development for examination timetabling”. Journal of Scheduling, 12(1), 55-89, 2009.
  • Broder S. “Final examination scheduling”. Communications of the ACM, 7(8), 494-498, 1964.
  • Lotfi V, Cerveny R. “A final-exam-scheduling package”. Journal of the Operational Research Society, 42(3), 205-216, 1991.
  • Bullnheimer B. An Examination Scheduling Model to Maximize Students’ Study Time. Editors: Burke E, Carter M. Practice and Theory of Automated Timetabling II, LNCS, Vol. 1408, 78-91, Berlin, Heidelberg, Springer, 1998.
  • Wong T, Côté P, Gely P. “Final Exam Timetabling: A Practical Approach”. IEEE Canadian Conference on Electrical and Computer Engineering, (CCECE 2002), Manitoba, Canada, 12-15 May 2002.
  • Mushi AR. “Mathematical programming formulations for the examinations timetable problem: the case of the University Of Dar Es Salaam”. AJST, 5(2), 34-40, 2004.
  • MirHassani SA. “Improving paper spread in examination timetables using integer programming”. Applied Mathematics and Computation, 179(2), 702-706, 2006.
  • McCollum B, McMullan P, Parkes AJ, Burke EK, Qu R. “A new model for automated examination timetabling”. Annals of Operations Research, 194(1), 291-315, 2012.
  • Wang S, Bussieck M, Guignard M, Meeraus A, O’Brien F. “Term-end exam scheduling at United States Military Academy/West Point”. Journal of Scheduling, 13(4), 375-391, 2010.
  • Al-Yakoob SM, Sherali HD. “A mixed-integer programming approach to a class timetabling problem: a case study with gender policies and traffic considerations”. European Journal of Operational Research, 180(3), 1028-1044, 2007.
  • Kahar MNM, Kendall G. “The examination timetabling problem at Universiti Malaysia Pahang: comparison of a constructive heuristic with an existing software solution”. European Journal of Operational Research, 207(2), 557-565, 2010.
  • Ayob M, Hamdan AR, Abdullah S, Othman Z., Nazri MZA, Razak KA, ... Sabar NR. “Intelligent examination timetabling software”. Procedia-Social and Behavioral Sciences, 18, 600-608, 2011.
  • Komijan AR, Koupaei MN. “A new binary model for university examination timetabling: a case study”. Journal of Industrial Engineering International, 8(1), 1-7, 2012.
  • Ahmad F, Mohammad Z, Hassan H, Rose ANM, Muktar D. “Quadratic assignment approach for optimization of examination scheduling”. Applied Mathematical Sciences, 9(130), 6449-6460, 2015.
  • Koksalmış E, Gracia C, Rabadi G. “The optimal exam experience: a timetabling approach to prevent student cheating and fatigue”. International Journal of Operational Research, 21(3), 263-278, 2014.
  • Arbaoui T, Boufflet JP, Moukrim A. “A matheuristic for exam timetabling”. IFAC-PapersOnLine, 49(12), 1289-1294, 2016.
  • Cataldo A, Ferrer JC, Miranda J, Rey PA, Sauré A. “An integer programming approach to curriculum-based examination timetabling”. Annals of Operations Research, 258(2), 369-393, 2016.
  • Woumans G, De Boeck L, Beliën J, Creemers S. “A column generation approach for solving the examination-timetabling problem”. European Journal of Operational Research, 253(1), 178-194, 2016.
  • Cavdur F, Kose M. “A fuzzy logic and binary-goal programming-based approach for solving the exam timetabling problem to create a balanced-exam schedule”. International Journal of Fuzzy Systems, 18(1), 119-129, 2016.
  • Ergul Z, Kamisli Ozturk, Z. “A new mathematical model for multisession exams-building assignment”. Acta Physica Polonica A, 132(3), 1207-1210, 2017.
  • Sağlam B, Salman FS, Sayın S, Türkay M. “A mixed-integer programming approach to the clustering problem with an application in customer segmentation”. European Journal of Operational Research, 16, 173(3), 866-879, 2006.
  • ILOG, IBM. IBM ILOG CPLEX Optimization Studio, V12.6.2., 2013.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Rahime Sancar Edis

Emrah Bünyamin Edis

Yayımlanma Tarihi 26 Şubat 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 25 Sayı: 1

Kaynak Göster

APA Sancar Edis, R., & Edis, E. B. (2019). Gerçek bir sınav çizelgeleme problemi için iki aşamalı çözüm yaklaşımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 71-81.
AMA Sancar Edis R, Edis EB. Gerçek bir sınav çizelgeleme problemi için iki aşamalı çözüm yaklaşımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2019;25(1):71-81.
Chicago Sancar Edis, Rahime, ve Emrah Bünyamin Edis. “Gerçek Bir sınav çizelgeleme Problemi için Iki aşamalı çözüm yaklaşımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, sy. 1 (Şubat 2019): 71-81.
EndNote Sancar Edis R, Edis EB (01 Şubat 2019) Gerçek bir sınav çizelgeleme problemi için iki aşamalı çözüm yaklaşımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 1 71–81.
IEEE R. Sancar Edis ve E. B. Edis, “Gerçek bir sınav çizelgeleme problemi için iki aşamalı çözüm yaklaşımı”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 1, ss. 71–81, 2019.
ISNAD Sancar Edis, Rahime - Edis, Emrah Bünyamin. “Gerçek Bir sınav çizelgeleme Problemi için Iki aşamalı çözüm yaklaşımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/1 (Şubat 2019), 71-81.
JAMA Sancar Edis R, Edis EB. Gerçek bir sınav çizelgeleme problemi için iki aşamalı çözüm yaklaşımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:71–81.
MLA Sancar Edis, Rahime ve Emrah Bünyamin Edis. “Gerçek Bir sınav çizelgeleme Problemi için Iki aşamalı çözüm yaklaşımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 1, 2019, ss. 71-81.
Vancouver Sancar Edis R, Edis EB. Gerçek bir sınav çizelgeleme problemi için iki aşamalı çözüm yaklaşımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(1):71-8.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.