Araştırma Makalesi
BibTex RIS Kaynak Göster

Maden sahası atıklarında bağlayıcı materyal ve Thiobacillus thiooxidans varlığının ağır metal mobilizasyonuna etkisinin araştırılması

Yıl 2019, Cilt: 25 Sayı: 3, 268 - 279, 28.06.2019

Öz

Çalışmada,
terk edilmiş bir Pb-Zn madeni ve işletilmekte olan bor madeni atıklarındaki
arsenik (As), bor (B), kadmiyum (Cd), bakır (Cu), mangan (Mn), kurşun (Pb),
talyum (Tl) ve çinko (Zn) elementlerinin toplam konsantrasyonları, kimyasal
bağlanma formlarındaki dağılımları ile bu elementlerin bağlayıcı materyal ve
asidik bakteri olan Thiobacillus thiooxidans varlığında mobilizasyonları
incelenmiştir. Ayrıca atık ve bağlayıcı materyallerdeki sülfür ve karbonat
miktarları da belirlenerek, statik testlere göre atıkların asit nötralize etme
potansiyeli hesaplanmıştır.  Mobilizasyon
çalışmaları için iki farklı bölgeden temin edilen atık ile bağlayıcı materyal
olarak seçilen leonardit ve evsel katı atık kompostu farklı oranlarda
karıştırılmak suretiyle (10/0, 9.5/0.5, 9/1, 8/2) deneyler yürütülmüştür.
Ayrıca, sülfür oksitleyen bir bakteri olan Thiobacillus thiooxidans’ın ortama
ilave edilmesiyle mobilizasyona olan etkisi çalışılmıştır. Standart bir liç
testi olan EPA 1310B Ekstraksiyon Prosedürü kullanılarak mobilize olan ağır
metaller tespit edilmiş, bulgular SPSS 24 programı ile istatistiksel olarak
değerlendirilerek çalışılan parametreler arasındaki korelasyonlar ortaya
çıkarılmıştır. Leonardit ve kompostun maden atıklarına karıştırılmasıyla, ağır
metal mobilitesinde istatistiksel olarak anlamlı bir azalma görülmemiştir.
Ancak farklı bağlayıcı materyaller, ağır metal türüne göre farklı etkiler
göstermiştir.  Sonuç olarak, ortamda
Thiobacillus thiooxidans olması durumunda ağır metal mobilitesinin arttığı ve
bunun öncelikli olarak değişken ve asitle çözülebilir fraksiyonda ve sonrasında
indirgenebilir fraksiyon ile organik fraksiyonlarına bağlı metal miktarı ile doğru
orantılı olduğu anlaşılmıştır.

Kaynakça

  • Salomons W. “Environmental impact of metals derived from mining activities: Processes, predictions, prevention”. Journal of Geochemistry Exploration, 52(1-2 ), 5-23, 2005.
  • Dudka S, Adriano DC. “Environmental impacts of metal ore mining and processing: a review”. Journal of Environmental Quality, 26(3), 590-602, 1997.
  • Ahmari S, Zhang L. “Durability and leaching behavior of mine tailings-based geopolymer bricks”. Construction Building Materials, 44, 743-750, 2013.
  • Gümgüm B, Öztürk G. “Chemical Speciation of heavy metals in the Tigris River sediment”. Chemical Speciation and Bioavailability, 13(1), 25-29, 2001.
  • Nordstrom DK, Jenne EA, Ball, JW. Redox equilibria of iron in acid mine waters. Editor: Jenne EA. Chemical modeling in aqueous systems. 51-79, American Chemical Society, Washington, 1979.
  • Durkin TV, Herrmann JG. “Focussing the problems of Mining waste: An introduction to Acid Mine Drainage” . EPA Seminar publication no. EPA/625/R-95/007, Managing environmental problems at inactive and Abandoned metal mine sites, 1994.
  • Akcil A, Koldas S. “Acid Mine Drainage (AMD): causes, treatment and case studies”. Journal of Cleaner Production, 14, 1139-1145, 2006.
  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K. “Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize?”. Journal of Hazardous Materials, 266, 141-166, 2014.
  • Misra M, Yang K, Mehta RK. “Application of flyash in the agglomeration of reactive mine tailings”. Journal of Hazardous Materials, 51, 18I-192, 1996.
  • Bertocchi AF, Ghiani M, Peretti R, Zucca A. “Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn”. Journal of Hazardous Material, 134, 112-119, 2006.
  • Rios CA, Williams CD, Roberts CL. “Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites”. Journal of Hazardous Materials, 156, 23-35, 2008.
  • Costa MC, Santos ES, Barros RJ, Pires C, Martins M. “Wine wastes as carbon source for biological treatment of acid mine drainage”. Chemosphere, 75, 831-836, 2009.
  • Songa H, Yimb GJ, Jib SW, Neculitac CM, Hwang T. “Pilot-scale passive bioreactors for the treatment of acid mine drainage: Efficiency of mushroom compost vs. mixed substrates for metal removal”. Journal of Environmental Management, 111, 150-158, 2012.
  • Tao X, Li A, Yang H. “Immobilization of metals in contaminated soils using natural polymer-based stabilizers”. Environmental Pollution, 222, 348-355, 2017.
  • California Mining Association. “Mine Waste Management”. Edited and Authored by Hutchison I, Ellison RD. Sacramento, CA, 1991.
  • Çevre ve Şehircilik Bakanlığı. “Maden Atıkları Yönetmeliği”. http://www.resmigazete.gov.tr/eskiler/2015/07/20150715-3.htm (31.03.2018).
  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL. “Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil”. Environmental Pollution, 158, 2282-2287, 2010.
  • Boechat CL, Pistoia VC, Ludtke AC, Gianello C, Camargo FAO. “Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances”. Revista Brasileira de Ciencia do Solo, 40:e0150383, 2016.
  • Gül S. “Balıkesir/Balya Pb-Zn Maden Atık Sahasının Biyojeokimyası ve Asidik Maden Drenajı Oluşumuna Etkilerinin Araştırılması”. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2014.
  • Güven D. “Heavy Metals Bioleaching in the Sediments of Izmir Inner Bay”. PhD Thesis, Dokuz Eylul University, Izmir, Turkey, 2008.
  • DSMZ. “Growth mediums of Thiobacillus spp”, retrieved May25, 2005 from http://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium271.pdf (31.03.2018).
  • Standard Methods for the Examination Water and Wastewater. 18th edition. American Public Health Association, Washington DC, USA, 1992.
  • Franson MAH, Greenberg AE, Clesceri LS, Eaton AD. Standard Methods for the Examination Water and Wastewater. 18th edition. American Public Health Association, Washington DC, USA, 9-99, 1992.
  • Chen M, Ma LQ. “Comparison of three aqua regia digestion methods for twenty Florida soils”. Soil Science Society of America Journal, 65, 491-499, 2001.
  • Rowell DL. Soil Science: methods and applications. Harlow, Essex: Longman Scientific & Technical, New York, Wiley, 1994. ISBN: 0582087848.
  • Lawrence RW, Jaffe S, Broughton LM. “In-house Development of the Net Acid Production Test Method”. Coastech Research, 1988.
  • Brodie, MJ, Broughton LM, Robertson AM. “A Conceptual Rock Classification System for Waste Management and a Laboratory Method for ARD Prediction from Rock Piles”. Second International Conference on the Abatement of Acidic Drainage. Montreal, Canada. 16-18 September 1991.
  • Rauret G, Lopez-Sanchez JF, Sahuquillo A, Rubio R, Davidson C, Ure AM, Muntau H. “Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials”. Journal of Environment Monitoring, 1, 57-61, 1999.
  • Method 1310B Extraction Procedure (EP) Toxıcity Test Method and Structural Integrity Test. https://www.epa.gov/hw-sw846/sw-846-test-method-1310b-extraction-procedure-ep-toxicity-test-method-and-structural (27.03.2018).
  • Cox PA. The Elements : Their Origin, Abundance, and Distribution. Oxford, UK, Oxford University Press,1989.
  • Daniela K, Jakub E, Lukas P. “Effect of Compost Amendment on Heavy Metals Transport to Plant”. Mendelnet, 249-254, 2015.
  • Ruttens A, Colpaert JV, Mench M, Boisson J, Carleer R, Vangronsveld J. “Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching”. Environmental Pollution, 144, 533-539, 2006.

Investigation of the effect of binding material and Thiobacillus thiooxidans on the heavy metals mobilization in the mine tailings

Yıl 2019, Cilt: 25 Sayı: 3, 268 - 279, 28.06.2019

Öz

The
total concentrations of arsenic (As), boron (B), cadmium (Cd), copper (Cu),
manganese (Mn), lead (Pb), thallium (Tl) and zinc (Zn) in the mine tailings of
an abandoned Pb-Zn mining site and an open boron mining site are investigated
in this study. In addition, heavy metals’ distributions in chemical binding
forms and their mobilities with the presence of binding materials and acidic
bacteria are examined. The amounts of sulfur and carbonate in the waste and
binding materials are also determined according to the static method, in order
to define the acid neutralization potential of the wastes. For mobilization
studies, mine tailings are mixed with with leonardite and domestic solid waste
compost in different ratios (10/0, 9.5 / 0.5, 9/1; 8/2). Independent from the
binding materials, the mobilization effect of sulfur oxidizing Thiobacillus
thiooxidans bacteria has been tested and evaluated. Experiments are conducted
using a standard leach test EPA 1310B Extraction Procedure, and correlations
between the parameters studied were statistically evaluated using the findings
of SPSS 24. Although there is no statistically significant reduction in metals’
mobilization with the use of leonardite and waste compost, it has been concluded
that different binding agents may have different impacts due to the metal type.
As a result, it is understood that metals mobility increases in the presence of
Thiobacillus thiooxidans in the environment, and that the heavy metal mobility
is directly proportional to the exchangeable and acid soluble fraction,
followed by the reducible fraction and the amount of metals bound to the
organic fractions.

Kaynakça

  • Salomons W. “Environmental impact of metals derived from mining activities: Processes, predictions, prevention”. Journal of Geochemistry Exploration, 52(1-2 ), 5-23, 2005.
  • Dudka S, Adriano DC. “Environmental impacts of metal ore mining and processing: a review”. Journal of Environmental Quality, 26(3), 590-602, 1997.
  • Ahmari S, Zhang L. “Durability and leaching behavior of mine tailings-based geopolymer bricks”. Construction Building Materials, 44, 743-750, 2013.
  • Gümgüm B, Öztürk G. “Chemical Speciation of heavy metals in the Tigris River sediment”. Chemical Speciation and Bioavailability, 13(1), 25-29, 2001.
  • Nordstrom DK, Jenne EA, Ball, JW. Redox equilibria of iron in acid mine waters. Editor: Jenne EA. Chemical modeling in aqueous systems. 51-79, American Chemical Society, Washington, 1979.
  • Durkin TV, Herrmann JG. “Focussing the problems of Mining waste: An introduction to Acid Mine Drainage” . EPA Seminar publication no. EPA/625/R-95/007, Managing environmental problems at inactive and Abandoned metal mine sites, 1994.
  • Akcil A, Koldas S. “Acid Mine Drainage (AMD): causes, treatment and case studies”. Journal of Cleaner Production, 14, 1139-1145, 2006.
  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K. “Remediation of heavy metal(loid)s contaminated soils-to mobilize or to immobilize?”. Journal of Hazardous Materials, 266, 141-166, 2014.
  • Misra M, Yang K, Mehta RK. “Application of flyash in the agglomeration of reactive mine tailings”. Journal of Hazardous Materials, 51, 18I-192, 1996.
  • Bertocchi AF, Ghiani M, Peretti R, Zucca A. “Red mud and fly ash for remediation of mine sites contaminated with As, Cd, Cu, Pb and Zn”. Journal of Hazardous Material, 134, 112-119, 2006.
  • Rios CA, Williams CD, Roberts CL. “Removal of heavy metals from acid mine drainage (AMD) using coal fly ash, natural clinker and synthetic zeolites”. Journal of Hazardous Materials, 156, 23-35, 2008.
  • Costa MC, Santos ES, Barros RJ, Pires C, Martins M. “Wine wastes as carbon source for biological treatment of acid mine drainage”. Chemosphere, 75, 831-836, 2009.
  • Songa H, Yimb GJ, Jib SW, Neculitac CM, Hwang T. “Pilot-scale passive bioreactors for the treatment of acid mine drainage: Efficiency of mushroom compost vs. mixed substrates for metal removal”. Journal of Environmental Management, 111, 150-158, 2012.
  • Tao X, Li A, Yang H. “Immobilization of metals in contaminated soils using natural polymer-based stabilizers”. Environmental Pollution, 222, 348-355, 2017.
  • California Mining Association. “Mine Waste Management”. Edited and Authored by Hutchison I, Ellison RD. Sacramento, CA, 1991.
  • Çevre ve Şehircilik Bakanlığı. “Maden Atıkları Yönetmeliği”. http://www.resmigazete.gov.tr/eskiler/2015/07/20150715-3.htm (31.03.2018).
  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL. “Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil”. Environmental Pollution, 158, 2282-2287, 2010.
  • Boechat CL, Pistoia VC, Ludtke AC, Gianello C, Camargo FAO. “Solubility of Heavy Metals/Metalloid on Multi-Metal Contaminated Soil Samples from a Gold Ore Processing Area: Effects of Humic Substances”. Revista Brasileira de Ciencia do Solo, 40:e0150383, 2016.
  • Gül S. “Balıkesir/Balya Pb-Zn Maden Atık Sahasının Biyojeokimyası ve Asidik Maden Drenajı Oluşumuna Etkilerinin Araştırılması”. Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi, İstanbul, Türkiye, 2014.
  • Güven D. “Heavy Metals Bioleaching in the Sediments of Izmir Inner Bay”. PhD Thesis, Dokuz Eylul University, Izmir, Turkey, 2008.
  • DSMZ. “Growth mediums of Thiobacillus spp”, retrieved May25, 2005 from http://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium271.pdf (31.03.2018).
  • Standard Methods for the Examination Water and Wastewater. 18th edition. American Public Health Association, Washington DC, USA, 1992.
  • Franson MAH, Greenberg AE, Clesceri LS, Eaton AD. Standard Methods for the Examination Water and Wastewater. 18th edition. American Public Health Association, Washington DC, USA, 9-99, 1992.
  • Chen M, Ma LQ. “Comparison of three aqua regia digestion methods for twenty Florida soils”. Soil Science Society of America Journal, 65, 491-499, 2001.
  • Rowell DL. Soil Science: methods and applications. Harlow, Essex: Longman Scientific & Technical, New York, Wiley, 1994. ISBN: 0582087848.
  • Lawrence RW, Jaffe S, Broughton LM. “In-house Development of the Net Acid Production Test Method”. Coastech Research, 1988.
  • Brodie, MJ, Broughton LM, Robertson AM. “A Conceptual Rock Classification System for Waste Management and a Laboratory Method for ARD Prediction from Rock Piles”. Second International Conference on the Abatement of Acidic Drainage. Montreal, Canada. 16-18 September 1991.
  • Rauret G, Lopez-Sanchez JF, Sahuquillo A, Rubio R, Davidson C, Ure AM, Muntau H. “Improvement of the BCR three-step sequential extraction procedure prior to the certification of new sediment and soil reference materials”. Journal of Environment Monitoring, 1, 57-61, 1999.
  • Method 1310B Extraction Procedure (EP) Toxıcity Test Method and Structural Integrity Test. https://www.epa.gov/hw-sw846/sw-846-test-method-1310b-extraction-procedure-ep-toxicity-test-method-and-structural (27.03.2018).
  • Cox PA. The Elements : Their Origin, Abundance, and Distribution. Oxford, UK, Oxford University Press,1989.
  • Daniela K, Jakub E, Lukas P. “Effect of Compost Amendment on Heavy Metals Transport to Plant”. Mendelnet, 249-254, 2015.
  • Ruttens A, Colpaert JV, Mench M, Boisson J, Carleer R, Vangronsveld J. “Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching”. Environmental Pollution, 144, 533-539, 2006.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makale
Yazarlar

Derya Aktaş Bu kişi benim

Görkem Akıncı

Duyuşen Güven

Yayımlanma Tarihi 28 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 25 Sayı: 3

Kaynak Göster

APA Aktaş, D., Akıncı, G., & Güven, D. (2019). Maden sahası atıklarında bağlayıcı materyal ve Thiobacillus thiooxidans varlığının ağır metal mobilizasyonuna etkisinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 268-279.
AMA Aktaş D, Akıncı G, Güven D. Maden sahası atıklarında bağlayıcı materyal ve Thiobacillus thiooxidans varlığının ağır metal mobilizasyonuna etkisinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2019;25(3):268-279.
Chicago Aktaş, Derya, Görkem Akıncı, ve Duyuşen Güven. “Maden Sahası atıklarında bağlayıcı Materyal Ve Thiobacillus Thiooxidans varlığının ağır Metal Mobilizasyonuna Etkisinin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25, sy. 3 (Haziran 2019): 268-79.
EndNote Aktaş D, Akıncı G, Güven D (01 Haziran 2019) Maden sahası atıklarında bağlayıcı materyal ve Thiobacillus thiooxidans varlığının ağır metal mobilizasyonuna etkisinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25 3 268–279.
IEEE D. Aktaş, G. Akıncı, ve D. Güven, “Maden sahası atıklarında bağlayıcı materyal ve Thiobacillus thiooxidans varlığının ağır metal mobilizasyonuna etkisinin araştırılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 3, ss. 268–279, 2019.
ISNAD Aktaş, Derya vd. “Maden Sahası atıklarında bağlayıcı Materyal Ve Thiobacillus Thiooxidans varlığının ağır Metal Mobilizasyonuna Etkisinin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 25/3 (Haziran 2019), 268-279.
JAMA Aktaş D, Akıncı G, Güven D. Maden sahası atıklarında bağlayıcı materyal ve Thiobacillus thiooxidans varlığının ağır metal mobilizasyonuna etkisinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25:268–279.
MLA Aktaş, Derya vd. “Maden Sahası atıklarında bağlayıcı Materyal Ve Thiobacillus Thiooxidans varlığının ağır Metal Mobilizasyonuna Etkisinin araştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 25, sy. 3, 2019, ss. 268-79.
Vancouver Aktaş D, Akıncı G, Güven D. Maden sahası atıklarında bağlayıcı materyal ve Thiobacillus thiooxidans varlığının ağır metal mobilizasyonuna etkisinin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2019;25(3):268-79.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.