Makine öğrenmesi yöntemleri ile kuraklık analizi
Yıl 2019,
Cilt: 25 Sayı: 8, 985 - 991, 31.12.2019
Eyyup Ensar Başakın
,
Ömer Ekmekçioğlu
,
Mehmet Özger
Öz
Çevresel etmenler canlı yaşamına doğrudan etki eden birçok doğal afeti tetiklemektedir. Bu afetlerin en önemlilerinden biri de kuraklıktır. Kuraklığın su kaynakları üzerindeki etkisi birçok şekilde canlıları etkilemektedir. Özellikle kuraklığın sebep olduğu, içme suyu ve tarımsal sulama amaçlı kullanılan su kaynaklarında görülen azalmalar, insan yaşamını önemli ölçüde tehdit edebilmektedir. Kuraklık diğer afetler gibi aniden ortaya çıkmadığı için, kuraklık oluşmadan önce tahmin edilip gerekli önlemlerin alınabilmesi imkânı bulunmaktadır. Kuraklık olayının belirlenebilmesi için çeşitli kuraklık indeksleri kullanılmakta ve bu da kuraklığı tahmin edebilme imkânı sunmaktadır. Zaman içerisinde büyük değişiklikler gösteren kuraklık indekslerinin tahmini için birçok araştırma yapılmıştır. Bu çalışmada Kayseri iline ait 116 yıllık Palmer Kuraklık Şiddet İndeksi (PDSI - Palmer Drought Severity Index) değerleri, makine öğrenmesi yöntemleri kullanılarak modellenmiş olup, bir, üç ve altı ay sonraki kuraklık değerleri tahmin edilmiştir. Destek vektör makineleri (SVM) ve K-en yakın komşuluk (KNN) algoritmaları kullanılarak oluşturulan modeller ile yapılan tahminlerin başarı oranı istatistiksel olarak değerlendirilmiştir. Yapılan bu çalışma göstermiştir ki, makine öğrenmesi yöntemleri kuraklık problemlerin çözümüne önemli ölçüde katkı sağlamaktadır.
Kaynakça
- Wilhite DA, Glantz MH. “Understanding the Drought Phenomenon: the role of definitions”. Water International, 10(3), 111-120, 1985.
- Cutore P. “Forecasting Palmer index using neural networks and climatic indexes”. Journal of Hydrologic Engineering, 6(14), 585-595, 2009.
- Kim TW, Valdes JB. “Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks”. Journal of Hydrologic Engineering, 8(6), 319-328, 2003.
- Belayneh A, Adamowski C, Khalil B, Quilty J. “Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction”. Atmospheric Research, 172, 37-47, 2016.
- Belayneh A, Adamowski J. “Drought forecasting using new machine learning methods”. Journal Of Water And Land Development, 18, 3-12, 2013.
- Özger M, Mishra AK, Singh VP. “Long lead time drought forecasting using a wavelet and fuzzy logic combination model: a case study in Texas”. Journal Of Hydrometeorology, 13, 284-297, 2012.
- Ma X, Zhong Q. “Missing value imputation method for disaster decision-making using k nearest neighbor”. Journal of Applied Statistics, 43(4), 767-781, 2016.
- Özger M, Mishra AK, Singh VP. “Estimating palmer drought severity index using a wavelet fuzzy logic model based on meteorological variables”. Internatıonal Journal of Climatology, 31, 2021-2032, 2011.
- Mokhtarzad M, Eskandari F, Jamshidi Vanjani N. “Drought forecasting by ANN, ANFIS, and SVM and comparison of the models”. Environtal Earth Science 76, 729, 2017.
- Ganguli P, Reddy M. “Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach”. Hydrological Processes, 28, 4989- 5009, 2014.
- El Ibrahimi A, Baali A. “Application of several artificial intelligence models for forecasting meteorological drought using the standardized precipitation index in the saïss plain (Northern Morocco)”. International Journal of Intelligent Engineering and Systems, 11, 267-275, 2018.
- Palmer WC. Meteorological Drought. Research Paper No. 45, U.S. Weather Bureau, Washington, D.C. 1995.
- Cortes C, Vapnik V. “Support-Vector networks”. Machine Learning, 20(3), 273-297, 1995.
- Yiğiter ŞY, Sarı SS, Karabulut T, Başakın EE. "Kira sertifikasi fiyat değerlerinin makine öğrenmesi metodu ile tahmini ". International Journal of Islamic Economics and Finance Studies, 4, 74-82, 2018.
- Serroukh, A, Walden AT, Percival CB. "Statistical properties and uses of the wavelet variance estimator for the scale analysis of time series". Journal of the American Statistical Association, 95(449), 184-196, 2000.
- Kayseri İli Tarımsal Yatırım Rehberi, T.C. Gıda Tarım ve Hayvancılık Bakanlığı Strateji Geliştirme Başkanlığı, 2018.
- Wells N, Goddard S, Hayes MJ. “A self-calibrating Palmer Drought Severity Index”. Journal of Climate, 17, 2335-2351, 2004.
- Altunkaynak A, Başakın EE. "Zaman serileri kullanilarak nehir akim tahmini ve farkli yöntemlerle karşilaştirilması". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11, 92-101, 2018.
- Nash JE, Sutcliffe JV. “River flow forecasting through conceptual models: Part 1. A Discussion Of Principle”. Journal of Hydrology, 10, 282-290, 1970.
Drought analysis with machine learning methods
Yıl 2019,
Cilt: 25 Sayı: 8, 985 - 991, 31.12.2019
Eyyup Ensar Başakın
,
Ömer Ekmekçioğlu
,
Mehmet Özger
Öz
Environmental factors, which directly affect the living beings cause the formation of many natural disasters. One of the most important of these disasters is drought. The effect of the drought on the water resources also affects many things in the way of living life. From the point of human life, diminution in water resources, may pose a significant threat. Drought does not appear suddenly, hence it is possible to predict and take necessary measures before it exists. In order to predict the drought, various drought indices are used to determine the drought phenomenon. A great deal of research has been made to estimate the drought values that have changed dramatically so far. In this study, the 116 - year Palmer Drought Severity Index (PDSI) values of Kayseri province were modeled using machine learning methods in order to predict future PDSI values. In this context, one, three and six months period of drought values were predicted. The success rate of the predictions constructed using support vector machines (SVM) and K-nearest neighbors (KNN) algorithms was evaluated statistically. This study indicates that machine learning methods provide a significant contribution to the solution of hydrological problems.
Kaynakça
- Wilhite DA, Glantz MH. “Understanding the Drought Phenomenon: the role of definitions”. Water International, 10(3), 111-120, 1985.
- Cutore P. “Forecasting Palmer index using neural networks and climatic indexes”. Journal of Hydrologic Engineering, 6(14), 585-595, 2009.
- Kim TW, Valdes JB. “Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks”. Journal of Hydrologic Engineering, 8(6), 319-328, 2003.
- Belayneh A, Adamowski C, Khalil B, Quilty J. “Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for drought prediction”. Atmospheric Research, 172, 37-47, 2016.
- Belayneh A, Adamowski J. “Drought forecasting using new machine learning methods”. Journal Of Water And Land Development, 18, 3-12, 2013.
- Özger M, Mishra AK, Singh VP. “Long lead time drought forecasting using a wavelet and fuzzy logic combination model: a case study in Texas”. Journal Of Hydrometeorology, 13, 284-297, 2012.
- Ma X, Zhong Q. “Missing value imputation method for disaster decision-making using k nearest neighbor”. Journal of Applied Statistics, 43(4), 767-781, 2016.
- Özger M, Mishra AK, Singh VP. “Estimating palmer drought severity index using a wavelet fuzzy logic model based on meteorological variables”. Internatıonal Journal of Climatology, 31, 2021-2032, 2011.
- Mokhtarzad M, Eskandari F, Jamshidi Vanjani N. “Drought forecasting by ANN, ANFIS, and SVM and comparison of the models”. Environtal Earth Science 76, 729, 2017.
- Ganguli P, Reddy M. “Ensemble prediction of regional droughts using climate inputs and the SVM-copula approach”. Hydrological Processes, 28, 4989- 5009, 2014.
- El Ibrahimi A, Baali A. “Application of several artificial intelligence models for forecasting meteorological drought using the standardized precipitation index in the saïss plain (Northern Morocco)”. International Journal of Intelligent Engineering and Systems, 11, 267-275, 2018.
- Palmer WC. Meteorological Drought. Research Paper No. 45, U.S. Weather Bureau, Washington, D.C. 1995.
- Cortes C, Vapnik V. “Support-Vector networks”. Machine Learning, 20(3), 273-297, 1995.
- Yiğiter ŞY, Sarı SS, Karabulut T, Başakın EE. "Kira sertifikasi fiyat değerlerinin makine öğrenmesi metodu ile tahmini ". International Journal of Islamic Economics and Finance Studies, 4, 74-82, 2018.
- Serroukh, A, Walden AT, Percival CB. "Statistical properties and uses of the wavelet variance estimator for the scale analysis of time series". Journal of the American Statistical Association, 95(449), 184-196, 2000.
- Kayseri İli Tarımsal Yatırım Rehberi, T.C. Gıda Tarım ve Hayvancılık Bakanlığı Strateji Geliştirme Başkanlığı, 2018.
- Wells N, Goddard S, Hayes MJ. “A self-calibrating Palmer Drought Severity Index”. Journal of Climate, 17, 2335-2351, 2004.
- Altunkaynak A, Başakın EE. "Zaman serileri kullanilarak nehir akim tahmini ve farkli yöntemlerle karşilaştirilması". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11, 92-101, 2018.
- Nash JE, Sutcliffe JV. “River flow forecasting through conceptual models: Part 1. A Discussion Of Principle”. Journal of Hydrology, 10, 282-290, 1970.