An alternative approach for calculating Turkey's digital transformation index: Bayesian BWM
Yıl 2023,
Cilt: 29 Sayı: 8, 842 - 854, 31.12.2023
Ayşegül Tuş
,
Gülin Zeynep Öztaş
,
Tayfun Öztaş
,
Abdullah Özçil
,
Esra Aytaç Adalı
Öz
The digital transformation process caused by Industry 4.0 requires the restructuring of countries. Digital transformation integrates the knowledge and technology. It aims at sustainable profitability with products with added value by increasing efficiency. Countries that are aware of the opportunities and threats created by digital transformation can find the opportunity to increase their market share by gaining a competitive advantage. For this reason, analyses and evaluations are made by various organizations in order to determine the level of adoption and implementation of digital transformation by countries. In this framework, Turkey Digital Transformation Index was prepared by Informatics Industry Association (TÜBİSAD) and the first one was published in 2020. It is a useful tool that allows observing the change in Turkey's digital transformation performance over time and making comparisons with other countries. The Turkey Digital Transformation Index includes 4 main components (main criteria) and 10 sub-components (sub-criteria) taking into account various indicators (criteria). It is assumed that the importance of each criterion is equal when calculating this index value. However, it is thought that the main and sub-criteria used in the index value calculation are actually different in importance. Therefore, it will be more meaningful to calculate the index by considering the criteria weights. For this reason, they are calculated in this study with Bayesian Best-Worst Method (BBWM), which is one of the Multi-Criteria Decision Making (MCDM) methods, taking into account the opinions of experts in digital transformation. The digital transformation index value is recalculated with these criteria weights. Thanks to this method, aggregated weights are obtained by measuring the degree to which an expert group prefers one criterion to another. This study provides tips on how to increase Turkey's digital transformation performance. It is thought that the findings will affect the ranking and comments.
Kaynakça
- [1] World Economic Forum. “Digital Transformation Initiative In collaboration with Accenture”. Executive Summary, Cologny/Geneva, Switzerland, 2018. https://reports.weforum.org/digital-transformation/ (01.08.2022).
- [2] Vial, G. “Understanding digital transformation: A review and a research agenda”. The Journal of Strategic Information Systems, 28(2), 118-144, 2019.
- [3] Büyüközkan G, Güler M. “Analysis of companies’ digital maturity by hesitant fuzzy linguistic MCDM methods”. Journal of Intelligent & Fuzzy Systems, 38(1), 1119-1132, 2020.
- [4] Güler M, Büyüközkan G. “Analysis of digital transformation strategies with an integrated fuzzy AHPaxiomatic design methodology”. IFAC-PapersOnLine, 52(13), 1186-1191, 2019.
- [5] Gülseren A, Sağbaş A. “Endüstri 4.0 perspektifinde sanayide dijital dönüşüm ve dijital olgunluk seviyesinin değerlendirilmesi”. European Journal of Engineering and Applied Sciences, 2(2), 1-5, 2019.
- [6] Zhu X, Ge S, Wang N. “Digital transformation: A systematic literature review”. Computers & Industrial Engineering, 162, 1-17, 2021.
- [7] Boğaziçi Üniversitesi Endüstri 4.0 Platformu. “Türkiye’de Dijital Dönüşüm Değerlendirme Aracı (D3A)” İstanbul, Türkiye, 2020. http://industry4zero.boun.edu.tr/wpcontent/uploads/2020/07/Sonuc-Raporu-v2.pdf (06.12.2022).
- [8] Tiutiunyk I, Drabek J, Antoniuk N, Navickas V, Rubanov, P. “The impact of digital transformation on macroeconomic stability: Evidence from EU countries”. Journal of International Studies, 14(3), 220-234, 2021.
- [9] Accenture, Boğaziçi Üniversitesi, Türkiye Bilişim Vakfı, ODTÜ, Vodafone. “Accenture Dijitalleşme Endeksi”. İstanbul, Türkiye, 2017. https://www.researchgate.net/publication/313676852 (06.12.2022).
- [10] TÜSİAD. “The Boston Consulting Group. “Türkiye’nin Sanayide Dönüşüm Yetkinliği”. İstanbul, Türkiye, TÜSİADT/2017,12–589, 2017. https://tusiad.org/tr/yayinlar/raporlar/item/download /8817_f994085fce0c6d5159e54d40069d67b1 (06.12.2022).
- [11] TÜBİSAD. “Türkiye’nin Dijital Dönüşüm Endeksi”. İstanbul, Türkiye, 2021. https://www.tubisad.org.tr/tr/images/pdf/tubisad2021-dde-raporu.pdf (06.12.2022).
- [12] Rezaei J. “Best-worst multi-criteria decision-making method”. Omega, 53, 49-57, 2015.
- [13] Mohammadi M, Rezaei J. “Bayesian best-worst method: a probabilistic group decision making model”. Omega, 96, 1-8, 2020.
- [14] Ma X, Li N, Tao X, Xu H, Peng F, Che Y, Guo, S. “The optimal selection of electrochemical energy storage using Bayesian BWM and TOPSIS method”. 2019 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China, 20-22 December 2019.
- [15] Aly H. “Digital transformation, development and productivity in developing countries: is artificial intelligence a curse or a blessing?”. Review of Economics and Political Science, 7(4), 238-256, 2022.
- [16] Henriette E, Feki M, Boughzala I. “The shape of digital transformation: A systematic literature review”. 9th Mediterranean Conference on Information Systems (MCIS), Samos, Greece, 03-05 October 2015.
- [17] Gebayew C, Hardini IR, Panjaitan GHA, Kurniawan, NB, Suhardi. “A systematic literature review on digital transformation”. 2018 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung, Indonesia, 22-26 October 2018.
- [18] Reis J, Amorim M, Melão N, Matos P. “Digital transformation: A literature review and guidelines for future research”. WorldCIST'18 2018: Trends and Advances in Information Systems and Technologies, Naples, Italy, 27-29 March 2018.
- [19] Luz Martín-Peña M, Díaz-Garrido E, Sánchez-López JM. “The digitalization and servitization of manufacturing: A review on digital business models”. Strategic Change, 27(2), 91-99, 2018.
- [20] Büyüközkan G, Göçer F. “Digital Supply Chain: Literature review and a proposed framework for future research”. Computers in Industry, 97, 157-177, 2018.
- [21] Mukhopadhyay S, Bouwman H. “Orchestration and governance in digital platform ecosystems: A literature review and trends”. Digital Policy, Regulation and Governance, 21(4), 329-351, 2019.
- [22] Cortellazzo L, Bruni E, Zampieri R. “The role of leadership in a digitalized world: A review”. Frontiers in Psychology, 10, 1-21, 2019.
- [23] Dobrolyubova E. “Measuring outcomes of digital transformation in public administration: Literature review and possible steps forward”. NISPAcee Journal of Public Administration and Policy, 14(1), 61-86, 2021.
- [24] Nagano A. “An integrated index towards sustainable digital transformation”. 2019 Third World Conference on Smart Trends in Systems Security and Sustainability (WorldS4), London, United Kingdom, 30-31 July 2019.
- [25] Strutynska I, Dmytrotsa L, Kozbur H, Melnyk L. “Systemintegrated methodological approach development to calculating the digital transformation index of businesses”. 16th International Conference ICTERI 2020, Kharkiv, Ukraine, 06-07 October 2020.
- [26] Kökümer Z. Çok Kriterli Karar Verme Yöntemleri ile Beyaz Eşya Sektöründe Endüstri 4.0 Dijital Dönüşüm Yetkinlik Analizi. Yüksek Lisans Tezi, Kocaeli Üniversitesi, Kocaeli, Türkiye, 2018.
- [27] Ataman AC. Savunma Sanayinde Endüstri 4.0 Olgunluk Parametrelerinin Tereddütlü Bulanık AHP Yöntemi ile Önceliklendirilmesi. Yüksek Lisans Tezi, Bahçeşehir Üniversitesi, İstanbul, Türkiye, 2018.
- [28] Şahin C. Ülkelerin Endüstri 4.0 düzeylerinin COPRAS Yöntemi ile Analizi: G-20 Ülkeleri ve Türkiye. Yüksek Lisans Tezi, Bartın Üniversitesi, Bartın, Türkiye, 2019.
- [29] Yılmaz Yalçıner A, Çaylak İ. “Türkiye’de dijital dönüşüme başlangıç için AHP ve TOPSIS yöntemleri ile sektörel sıralama”. Academic Platform-Journal of Engineering and Science, 8(2), 258-265, 2020.
- [30] Saçak R, Gür Ş, Eren T. “Türkiye’nin dijital dönüşüm yol haritasında yer alan stratejilerin TOPSIS yöntemi ile sıralanması”. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi, 21(2), 335-346, 2020.
- [31] Li J, Dou K, Wen S, Li Q. “Monitoring index system for sectors’ digital transformation and its application in China”. Electronics, 10(11), 1-22, 2021.
- [32] Llopis-Albert C, Rubio F, Valero F. “Impact of digital transformation on the automotive industry”. Technological Forecasting and Social Change, 162, 1-9, 2021.
- [33] Koca G. AB Ülkelerinin Dijital Dönüşüm Performanslarının ARAS Yöntemi ile İncelenmesi. Editörler: Koca G, Eğilmez Ö. Dijital Dönüşüm ve İşletmecilik, 7-24, İstanbul, Türkiye, Efe Akademi, 2021.
- [34] Bil E, Mutlu Yıldırım F. “Finans ve pazarlama perspektifinden dijital dönüşüm etkinliği ölçümü: MOORA yöntemi uygulaması”. Akademik Hassasiyetler, 8(16), 457- 472, 2021.
- [35] Karasan A, Ilbahar E, Kaya I, Cebeci B. “Sectoral prioritization of industry 4.0 under lean supply chain with an integrated fuzzy decision-making approach: The case of Turkey”. 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), Naples, Italy, 06-09 September 2021.
- [36] Brodny J, Tutak M. “Assessing the level of digital maturity of enterprises in the Central and Eastern European countries using the MCDM and Shannon’s entropy methods”. Plos One, 16(7), 1-38, 2021.
- [37] Büyüközkan G, Havle CA, Feyzioğlu O. “An integrated SWOT based fuzzy AHP and fuzzy MARCOS methodology for digital transformation strategy analysis in airline industry”. Journal of Air Transport Management, 97, 102142, 2021.
- [38] Małkowska A, Urbaniec M, Kosała M. “The impact of digital transformation on European countries: Insights from a comparative analysis”. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 325-355, 2021.
- [39] Aygün D, Satı ZE. “Evaluation of Industry 4.0 Transformation Barriers for SMEs in Turkey”. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 17(1), 239-255, 2022.
- [40] Limoncuoğlu Eren N. Proje Yönetiminde Dijital Dönüşüm Süreçleri İçin Bir Bulanık ÇKKV Modeli Önerisi. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara, Türkiye, 2022.
- [41] Eşiyok S, Demircioğlu M. “OECD ülkelerinin endüstri 4.0 düzeylerinin CRITIC ve CODAS yöntemleri ile değerlendirilmesi”. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 21(43), 377-398, 2022.
- [42] Abdallah YO, Shehab E, Al-Ashaab A. “Developing a digital transformation process in the manufacturing sector: Egyptian case study”. Information Systems and e-Business Management, 20(3), 1-18, 2022.
- [43] Alkan N, Kahraman C. “Prioritization of supply chain digital transformation strategies using multi-expert fermatean fuzzy analytic hierarchy process”. Informatica, 34(1), 1-33, 2023.
- [44] Mohammadi M, Rezaei J. “Evaluating and comparing ontology alignment systems: An MCDM approach”. Journal of Web Semantics, 64, 1-14, 2020.
- [45] Li L, Wang X, Rezaei J. “A Bayesian best-worst methodbased multicriteria competence analysis of crowdsourcing delivery personnel”. Complexity, 2020, 1-17, 2020.
- [46] Yang JJ, Lo HW, Chao CS, Shen CC, Yang CC. “Establishing a sustainable sports tourism evaluation framework with a hybrid multi-criteria decision-making model to explore potential sports tourism attractions in Taiwan”. Sustainability, 12(4), 1-20, 2020.
- [47] Guo S, Zhang W, Gao X. “Business risk evaluation of electricity retail company in China using a hybrid MCDM method”. Sustainability, 12(5), 1-21, 2020.
- [48] Huang CN, Liou JJ, Lo HW, Chang FJ. “Building an assessment model for measuring airport resilience”. Journal of Air Transport Management, 95, 1-11, 2021.
- [49] Ak MF, Yucesan M, Gul M. “Occupational health, safety and environmental risk assessment in textile production industry through a Bayesian BWM-VIKOR approach”. Stochastic Environmental Research and Risk Assessment, 36(2), 629-642, 2022.
- [50] Yang CC, Shen CC, Mao TY, Lo HW, Pai CJ. “A hybrid model for assesing the performance of medical tourism: integration of Bayesian BWM and Grey PROMETHEE-AL”. Journal of Function Spaces, 2022, 1-15, 2022.
- [51] Gul M, Yucesan M. “Performance evaluation of Turkish Universities by an integrated Bayesian BWM-TOPSIS model”. Socio-Economic Planning Sciences, 80, 1-17, 2022.
- [52] Saner HS, Yucesan M, Gul M. “A Bayesian BWM and VIKORbased model for assessing hospital preparedness in the face of disasters”. Natural Hazards, 111(2), 1603-1635, 2022.
- [53] Saaty T. The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation. London, McGraw-Hill, 1980.
- [54] Liang F, Brunelli M, Rezaei J. “Consistency issues in the best worst method: Measurements and thresholds”. Omega, 96, 1-11, 2020.
Türkiye’nin dijital dönüşüm endeksinin hesaplanması için alternatif bir yaklaşım: Bayesian BWM
Yıl 2023,
Cilt: 29 Sayı: 8, 842 - 854, 31.12.2023
Ayşegül Tuş
,
Gülin Zeynep Öztaş
,
Tayfun Öztaş
,
Abdullah Özçil
,
Esra Aytaç Adalı
Öz
Endüstri 4.0’ın yol açtığı dijital dönüşüm süreci, ülkelerin yeniden yapılandırılmasını gerektirmektedir. Dijital dönüşüm, bilgi birikimi ile teknolojiyi entegre ederek verimliliği arttırmak yoluyla katma değere sahip ürünler ile sürdürülebilir bir kârlılığı hedeflemektedir. Dijital dönüşümün yarattığı fırsatların ve tehditlerin farkında olan ülkeler, rekabette avantaj elde ederek pazar paylarını arttırma imkânı bulabilmektedir. Bu nedenle ülkelerin, dijital dönüşümü benimseme ve uygulama düzeylerinin tespit edilebilmesi için çeşitli kuruluşlar tarafından analizler ve değerlendirmeler yapılmaktadır. Bu çerçevede, Bilişim Sanayicileri Derneği (TÜBİSAD) tarafından hazırlanan ve ilki 2020 yılında yayımlanan Türkiye Dijital Dönüşüm Endeksi, Türkiye’nin dijital dönüşüm performansının zaman içinde değişiminin gözlenmesine ve diğer ülkelerle karşılaştırma yapılmasına imkân sağlayan kullanışlı bir araçtır. Türkiye Dijital Dönüşüm Endeksi, çeşitli göstergeleri (kriterleri) dikkate alarak, 4 ana bileşeni (ana kriteri) ve 10 alt bileşeni (alt kriteri) içeren bir endekstir. Bu endeks değeri hesaplanırken her bir kriterin öneminin eşit olduğu varsayılmaktadır. Ancak endeks değeri hesaplamada kullanılan ana ve alt kriterlerin önem derecelerinin gerçekte farklı olması nedeniyle kriter ağırlıklarının dikkate alınarak endeks hesaplamanın daha anlamlı olacağı düşünülmektedir. Bu nedenle bu çalışmada, kriter ağırlıklarının hesaplanmasında dijital dönüşüm konusunda uzmanlaşmış kişilerin görüşleri dikkate alınarak Çok Kriterli Karar Verme (ÇKKV) yöntemlerinden biri olan Bayesian Best-Worst Method (BBWM) ile dijital dönüşüm endeks değeri yeniden hesaplanmıştır. Bu yöntem sayesinde bir uzman grubun bir kriteri diğerine tercih etme derecesi ölçülerek bütünleşik ağırlıklar elde edilebilmektedir. Bu çalışma ile elde edilen bulgular, Türkiye’nin dijital dönüşüm performansını nasıl artırılabileceğine ilişkin ipuçları sunarken, bu bulguların TÜBİSAD'ın hazırladığı rapordaki sıralamayı ve yorumları etkileyeceği düşünülmektedir.
Kaynakça
- [1] World Economic Forum. “Digital Transformation Initiative In collaboration with Accenture”. Executive Summary, Cologny/Geneva, Switzerland, 2018. https://reports.weforum.org/digital-transformation/ (01.08.2022).
- [2] Vial, G. “Understanding digital transformation: A review and a research agenda”. The Journal of Strategic Information Systems, 28(2), 118-144, 2019.
- [3] Büyüközkan G, Güler M. “Analysis of companies’ digital maturity by hesitant fuzzy linguistic MCDM methods”. Journal of Intelligent & Fuzzy Systems, 38(1), 1119-1132, 2020.
- [4] Güler M, Büyüközkan G. “Analysis of digital transformation strategies with an integrated fuzzy AHPaxiomatic design methodology”. IFAC-PapersOnLine, 52(13), 1186-1191, 2019.
- [5] Gülseren A, Sağbaş A. “Endüstri 4.0 perspektifinde sanayide dijital dönüşüm ve dijital olgunluk seviyesinin değerlendirilmesi”. European Journal of Engineering and Applied Sciences, 2(2), 1-5, 2019.
- [6] Zhu X, Ge S, Wang N. “Digital transformation: A systematic literature review”. Computers & Industrial Engineering, 162, 1-17, 2021.
- [7] Boğaziçi Üniversitesi Endüstri 4.0 Platformu. “Türkiye’de Dijital Dönüşüm Değerlendirme Aracı (D3A)” İstanbul, Türkiye, 2020. http://industry4zero.boun.edu.tr/wpcontent/uploads/2020/07/Sonuc-Raporu-v2.pdf (06.12.2022).
- [8] Tiutiunyk I, Drabek J, Antoniuk N, Navickas V, Rubanov, P. “The impact of digital transformation on macroeconomic stability: Evidence from EU countries”. Journal of International Studies, 14(3), 220-234, 2021.
- [9] Accenture, Boğaziçi Üniversitesi, Türkiye Bilişim Vakfı, ODTÜ, Vodafone. “Accenture Dijitalleşme Endeksi”. İstanbul, Türkiye, 2017. https://www.researchgate.net/publication/313676852 (06.12.2022).
- [10] TÜSİAD. “The Boston Consulting Group. “Türkiye’nin Sanayide Dönüşüm Yetkinliği”. İstanbul, Türkiye, TÜSİADT/2017,12–589, 2017. https://tusiad.org/tr/yayinlar/raporlar/item/download /8817_f994085fce0c6d5159e54d40069d67b1 (06.12.2022).
- [11] TÜBİSAD. “Türkiye’nin Dijital Dönüşüm Endeksi”. İstanbul, Türkiye, 2021. https://www.tubisad.org.tr/tr/images/pdf/tubisad2021-dde-raporu.pdf (06.12.2022).
- [12] Rezaei J. “Best-worst multi-criteria decision-making method”. Omega, 53, 49-57, 2015.
- [13] Mohammadi M, Rezaei J. “Bayesian best-worst method: a probabilistic group decision making model”. Omega, 96, 1-8, 2020.
- [14] Ma X, Li N, Tao X, Xu H, Peng F, Che Y, Guo, S. “The optimal selection of electrochemical energy storage using Bayesian BWM and TOPSIS method”. 2019 6th International Conference on Information Science and Control Engineering (ICISCE), Shanghai, China, 20-22 December 2019.
- [15] Aly H. “Digital transformation, development and productivity in developing countries: is artificial intelligence a curse or a blessing?”. Review of Economics and Political Science, 7(4), 238-256, 2022.
- [16] Henriette E, Feki M, Boughzala I. “The shape of digital transformation: A systematic literature review”. 9th Mediterranean Conference on Information Systems (MCIS), Samos, Greece, 03-05 October 2015.
- [17] Gebayew C, Hardini IR, Panjaitan GHA, Kurniawan, NB, Suhardi. “A systematic literature review on digital transformation”. 2018 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung, Indonesia, 22-26 October 2018.
- [18] Reis J, Amorim M, Melão N, Matos P. “Digital transformation: A literature review and guidelines for future research”. WorldCIST'18 2018: Trends and Advances in Information Systems and Technologies, Naples, Italy, 27-29 March 2018.
- [19] Luz Martín-Peña M, Díaz-Garrido E, Sánchez-López JM. “The digitalization and servitization of manufacturing: A review on digital business models”. Strategic Change, 27(2), 91-99, 2018.
- [20] Büyüközkan G, Göçer F. “Digital Supply Chain: Literature review and a proposed framework for future research”. Computers in Industry, 97, 157-177, 2018.
- [21] Mukhopadhyay S, Bouwman H. “Orchestration and governance in digital platform ecosystems: A literature review and trends”. Digital Policy, Regulation and Governance, 21(4), 329-351, 2019.
- [22] Cortellazzo L, Bruni E, Zampieri R. “The role of leadership in a digitalized world: A review”. Frontiers in Psychology, 10, 1-21, 2019.
- [23] Dobrolyubova E. “Measuring outcomes of digital transformation in public administration: Literature review and possible steps forward”. NISPAcee Journal of Public Administration and Policy, 14(1), 61-86, 2021.
- [24] Nagano A. “An integrated index towards sustainable digital transformation”. 2019 Third World Conference on Smart Trends in Systems Security and Sustainability (WorldS4), London, United Kingdom, 30-31 July 2019.
- [25] Strutynska I, Dmytrotsa L, Kozbur H, Melnyk L. “Systemintegrated methodological approach development to calculating the digital transformation index of businesses”. 16th International Conference ICTERI 2020, Kharkiv, Ukraine, 06-07 October 2020.
- [26] Kökümer Z. Çok Kriterli Karar Verme Yöntemleri ile Beyaz Eşya Sektöründe Endüstri 4.0 Dijital Dönüşüm Yetkinlik Analizi. Yüksek Lisans Tezi, Kocaeli Üniversitesi, Kocaeli, Türkiye, 2018.
- [27] Ataman AC. Savunma Sanayinde Endüstri 4.0 Olgunluk Parametrelerinin Tereddütlü Bulanık AHP Yöntemi ile Önceliklendirilmesi. Yüksek Lisans Tezi, Bahçeşehir Üniversitesi, İstanbul, Türkiye, 2018.
- [28] Şahin C. Ülkelerin Endüstri 4.0 düzeylerinin COPRAS Yöntemi ile Analizi: G-20 Ülkeleri ve Türkiye. Yüksek Lisans Tezi, Bartın Üniversitesi, Bartın, Türkiye, 2019.
- [29] Yılmaz Yalçıner A, Çaylak İ. “Türkiye’de dijital dönüşüme başlangıç için AHP ve TOPSIS yöntemleri ile sektörel sıralama”. Academic Platform-Journal of Engineering and Science, 8(2), 258-265, 2020.
- [30] Saçak R, Gür Ş, Eren T. “Türkiye’nin dijital dönüşüm yol haritasında yer alan stratejilerin TOPSIS yöntemi ile sıralanması”. Dokuz Eylül Üniversitesi İşletme Fakültesi Dergisi, 21(2), 335-346, 2020.
- [31] Li J, Dou K, Wen S, Li Q. “Monitoring index system for sectors’ digital transformation and its application in China”. Electronics, 10(11), 1-22, 2021.
- [32] Llopis-Albert C, Rubio F, Valero F. “Impact of digital transformation on the automotive industry”. Technological Forecasting and Social Change, 162, 1-9, 2021.
- [33] Koca G. AB Ülkelerinin Dijital Dönüşüm Performanslarının ARAS Yöntemi ile İncelenmesi. Editörler: Koca G, Eğilmez Ö. Dijital Dönüşüm ve İşletmecilik, 7-24, İstanbul, Türkiye, Efe Akademi, 2021.
- [34] Bil E, Mutlu Yıldırım F. “Finans ve pazarlama perspektifinden dijital dönüşüm etkinliği ölçümü: MOORA yöntemi uygulaması”. Akademik Hassasiyetler, 8(16), 457- 472, 2021.
- [35] Karasan A, Ilbahar E, Kaya I, Cebeci B. “Sectoral prioritization of industry 4.0 under lean supply chain with an integrated fuzzy decision-making approach: The case of Turkey”. 2021 IEEE 6th International Forum on Research and Technology for Society and Industry (RTSI), Naples, Italy, 06-09 September 2021.
- [36] Brodny J, Tutak M. “Assessing the level of digital maturity of enterprises in the Central and Eastern European countries using the MCDM and Shannon’s entropy methods”. Plos One, 16(7), 1-38, 2021.
- [37] Büyüközkan G, Havle CA, Feyzioğlu O. “An integrated SWOT based fuzzy AHP and fuzzy MARCOS methodology for digital transformation strategy analysis in airline industry”. Journal of Air Transport Management, 97, 102142, 2021.
- [38] Małkowska A, Urbaniec M, Kosała M. “The impact of digital transformation on European countries: Insights from a comparative analysis”. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 325-355, 2021.
- [39] Aygün D, Satı ZE. “Evaluation of Industry 4.0 Transformation Barriers for SMEs in Turkey”. Eskişehir Osmangazi Üniversitesi İktisadi ve İdari Bilimler Dergisi, 17(1), 239-255, 2022.
- [40] Limoncuoğlu Eren N. Proje Yönetiminde Dijital Dönüşüm Süreçleri İçin Bir Bulanık ÇKKV Modeli Önerisi. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara, Türkiye, 2022.
- [41] Eşiyok S, Demircioğlu M. “OECD ülkelerinin endüstri 4.0 düzeylerinin CRITIC ve CODAS yöntemleri ile değerlendirilmesi”. İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 21(43), 377-398, 2022.
- [42] Abdallah YO, Shehab E, Al-Ashaab A. “Developing a digital transformation process in the manufacturing sector: Egyptian case study”. Information Systems and e-Business Management, 20(3), 1-18, 2022.
- [43] Alkan N, Kahraman C. “Prioritization of supply chain digital transformation strategies using multi-expert fermatean fuzzy analytic hierarchy process”. Informatica, 34(1), 1-33, 2023.
- [44] Mohammadi M, Rezaei J. “Evaluating and comparing ontology alignment systems: An MCDM approach”. Journal of Web Semantics, 64, 1-14, 2020.
- [45] Li L, Wang X, Rezaei J. “A Bayesian best-worst methodbased multicriteria competence analysis of crowdsourcing delivery personnel”. Complexity, 2020, 1-17, 2020.
- [46] Yang JJ, Lo HW, Chao CS, Shen CC, Yang CC. “Establishing a sustainable sports tourism evaluation framework with a hybrid multi-criteria decision-making model to explore potential sports tourism attractions in Taiwan”. Sustainability, 12(4), 1-20, 2020.
- [47] Guo S, Zhang W, Gao X. “Business risk evaluation of electricity retail company in China using a hybrid MCDM method”. Sustainability, 12(5), 1-21, 2020.
- [48] Huang CN, Liou JJ, Lo HW, Chang FJ. “Building an assessment model for measuring airport resilience”. Journal of Air Transport Management, 95, 1-11, 2021.
- [49] Ak MF, Yucesan M, Gul M. “Occupational health, safety and environmental risk assessment in textile production industry through a Bayesian BWM-VIKOR approach”. Stochastic Environmental Research and Risk Assessment, 36(2), 629-642, 2022.
- [50] Yang CC, Shen CC, Mao TY, Lo HW, Pai CJ. “A hybrid model for assesing the performance of medical tourism: integration of Bayesian BWM and Grey PROMETHEE-AL”. Journal of Function Spaces, 2022, 1-15, 2022.
- [51] Gul M, Yucesan M. “Performance evaluation of Turkish Universities by an integrated Bayesian BWM-TOPSIS model”. Socio-Economic Planning Sciences, 80, 1-17, 2022.
- [52] Saner HS, Yucesan M, Gul M. “A Bayesian BWM and VIKORbased model for assessing hospital preparedness in the face of disasters”. Natural Hazards, 111(2), 1603-1635, 2022.
- [53] Saaty T. The Analytic Hierarchy Process: Planning, Priority Setting, Resources Allocation. London, McGraw-Hill, 1980.
- [54] Liang F, Brunelli M, Rezaei J. “Consistency issues in the best worst method: Measurements and thresholds”. Omega, 96, 1-11, 2020.