Araştırma Makalesi
BibTex RIS Kaynak Göster

Treatment of cosmetic industry wastewater with boron doped diamond, platinum and metal oxide electrodes in electrooxidation process

Yıl 2024, Cilt: 30 Sayı: 1, 81 - 86, 29.02.2024

Öz

In this study, treatability of cosmetic wastewater consist high pollution by electrooxidation process was investigated using three different anodes. For this purpose, BDD (Boron Doped Diamond), Pt and RuO2-IrO2 metal-oxide electrodes were used. The total organic carbon (TOC) removal efficiency of each electrode was determined and results were compared. After 120 min of operating time, the TOC removal efficiencies of BDD anode were obtained as 31.6%, 57.8% and 68%; Pt anode were obtained as 25%, 36.5% and 48%; RuO2-IrO2 metal-oxide anode were obtained as 22.6%, 29.8% and 42.6% respectively for 0.5, 1 and 1.5 ampere currents. It is observed that TOC removal efficiency increases with time for all electrodes throughout the operation time. The results showed that BDD electrode provided the best removal efficiency and this efficiency increased by the time of progress. After 120 min of operating time, the best TOC removal efficiencies of BDD, Pt and RuO2-IrO2 metal-oxides electrodes were 68%, 48% and 42.6% respectively for 1.5 ampere.

Kaynakça

  • [1] Yu Y, Xie Y, Ji L, Zhang J, Cai Y, Yang Z. “Water management for industrial development, energy conservation, and subjective attitudes: a comprehensive risk-oriented model to explore the tolerance of unbalanced allocation problem”. Journal of Water and Climate Change, 13(1), 139-157, 2022.
  • [2] Cheng T. “The Production Flow of Cosmetics”. https://enrichbodycare.com/the-production-flow-of-cosmetics/#Step_1_Material_preparation (24.01.2023).
  • [3] Aguiar JB, Martins AM, Almeida C, Ribeiro HM, Marto J. “Water sustainability: A waterless life cycle for cosmetic products”. Sustainable Production and Consumption, 32, 35-51, 2022.
  • [4] Abidemi BL, James OA, Oluwatosin AT, Akinropo OJ, Oraeloka UD, Racheal AE. “Treatment technologies for wastewater from cosmetic industry-A review”. International Journal of Chemical and Biomolecular Science, 4(4), 69-80, 2018.
  • [5] Barrios JA, Becerril E, De León C, Barrera-Díaz C, Jiménez B. “Electrooxidation treatment for removal of emerging pollutants in wastewater sludge”. Fuel, 149, 26-33, 2015.
  • [6] Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H. “Removal of pharmaceuticals and fragrances in biological wastewater treatment”. Water Research, 39(14), 3139-3152, 2005.
  • [7] Reif R, Suárez S, Omil F, Lema JM. “Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage”. Desalination, 221(1-3), 511-517, 2008.
  • [8] Esplugas S, Bila DM, Krause LGT, Dezotti M. “Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents”. Journal of Hazardous Materials, 149(3), 631-642, 2007.
  • [9] Bogacki J, Marcinowski P, Zapałowska E, Maksymiec J, Naumczyk J. “Cosmetic wastewater treatment by the ZVI/H2O2 process”. Environmental Technology, 38(20), 2589-2600, 2017.
  • [10] Alvarino T, Suarez S, Katsou E, Vazquez-Padin J, Lema JM, Omil F. “Removal of PPCPs from the sludge supernatant in a one stage nitritation/anammox process”. Water Research, 68, 701-709, 2015.
  • [11] Gkika DA, Mitropoulos AC, Lambropoulou DA, Kalavrouziotis IK, Kyzas GZ. “Cosmetic wastewater treatment technologies: a review”. Environmental Science and Pollution Research, 29(50), 75223-75247, 2022.
  • [12] Muszyński A, Marcinowski P, Maksymiec J, Beskowska K, Kalwarczyk E, Bogacki J. “Cosmetic wastewater treatment with combined light/Fe0/H2O2 process coupled with activated sludge”. Journal of Hazardous Materials, 378, 1-9, 2019.
  • [13] Yenkie KM. “Integrating the three E’s in wastewater treatment: efficient design, economic viability, and environmental sustainability”. Current Opinion in Chemical Engineering, 26, 131-138, 2019.
  • [14] Brillas E, Sirés I, Oturan MA. “Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry”. Chemical Reviews, 109(12), 6570-6631, 2009.
  • [15] Sopaj F, Rodrigo MA, Oturan N, Podvorica FI, Pinson J, Oturan MA. “Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin”. Chemical Engineering Journal, 262, 286-294, 2015.
  • [16] Garrido-Cardenas JA, Esteban-García B, Agüera A, Sánchez-Pérez JA, Manzano-Agugliaro F. “Wastewater treatment by advanced oxidation process and their worldwide research trends”. International Journal of Environmental Research and Public Health, 17(1), 1-19, 2020.
  • [17] Metcalf L, Eddy HP, Tchobanoglous G. Wastewater Engineering: Treatment, Disposal, and Reuse. 4th ed. New York, USA, McGraw-Hill, 1991.
  • [18] Gligorovski S, Strekowski R, Barbati S, Vione D. “Environmental implications of hydroxyl radicals (• OH)”. Chemical Reviews, 115(24), 13051-13092, 2015.
  • [19] Tchobanoglus G, Burton F, Stensel HD. Wastewater Engineering: Treatment and Reuse. 4th ed. Boston, USA, McGraw-Hill, 2003.
  • [20] Deng Y, Zhao R. “Advanced oxidation processes (AOPs) in wastewater treatment”. Current Pollution Reports, 1, 167-176, 2015.
  • [21] Newman J, Balsara NP. Electrochemical systems. 4th ed. Berkeley, USA, Wiley, 2021.
  • [22] Panizza M, Cerisola G. “Direct and mediated anodic oxidation of organic pollutants”. Chemical Reviews, 109(12), 6541-6569, 2009.
  • [23] Chiang LC, Chang JE, Wen TC. “Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate”. Water Research, 29(2), 671-678, 1995.
  • [24] Farmer JC, Wang FT, Hawley‐Fedder RA, Lewis PR, Summers LJ, Foiles L. “Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol and benzene by silver (II)”. Journal of the Electrochemical Society, 139(3), 1-9, 1992.
  • [25] Anglada A, Urtiaga A, Ortiz I. “Contributions of electrochemical oxidation to waste‐water treatment: fundamentals and review of applications”. Journal of Chemical Technology & Biotechnology, 84(12), 1747-1755, 2009.
  • [26] Feng Y, Yang L, Liu J, Logan BE. “Electrochemical technologies for wastewater treatment and resource reclamation”. Environmental Science: Water Research & Technology, 2(5), 800-831, 2016.
  • [27] Deng Y, Englehardt JD. “Electrochemical oxidation for landfill leachate treatment”. Waste Management, 27(3), 380-388, 2007.
  • [28] Martínez-Huitle CA, Brillas E. “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review”. Applied Catalysis B: Environmental, 87(3-4), 105-145, 2009.
  • [29] Dubber D, Gray NF. “Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste”. Journal of Environmental Science and Health Part A, 45(12), 1595-1600, 2010.
  • [30] Hua X, Song X, Yuan M, Donga D. “The factors affecting relationship between COD and TOC of typical papermaking wastewater”. Advances in Computer Science, Intelligent System and Environment, Guangzhou, China, 24-25 September 2011.
  • [31] Moreira FC, Soler J, Fonseca A, Saraiva I, Boaventura RA, Brillas E, Vilar VJ. “Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate”. Water Research, 81, 375-387, 2015.

Kozmetik sanayi atıksularının boron doped diamond, platin ve metaloksit elektrotlar ile elektrooksidasyon prosesinde arıtılması

Yıl 2024, Cilt: 30 Sayı: 1, 81 - 86, 29.02.2024

Öz

Bu çalışmada, yüksek kirlilik içeriğine sahip kozmetik atıksuyunun elektroooksidasyon prosesi ile arıtılabilirliği 3 farklı anot kullanılarak araştırılmıştır. Bu amaçla BDD (Boron Doped Diamond), Pt ve RuO2-IrO2 metal-oksit elektrotları kullanılmıştır. Her bir elektrodun toplam organik karbon (TOK) giderim verimleri tespit edilmiştir ve elde edilen veriler karşılaştırılmıştır. 120 dk.’lık deney süresi sonunda TOK giderim verimleri 0.5, 1 ve 1.5 amper akımlar için sırasıyla BDD anot için %31.6, %57.8 ve %68; Pt anot için %25, %36.5 ve %48; RuO2-IrO2 metal-oksit anot için %22.6, %29.8 ve %42.6 olarak elde edilmiştir. Tüm elektrotlar için deney süresi boyunca TOK giderim verimlerinin zamanla arttığı belirlenmiştir. Deney setleri arasında BDD elektrotun en iyi giderim verimini sağladığı ve bu verimin zamanla arttığı görülmüştür. 120 dk.’lık deney süresi sonunda 1.5 amper için, BDD, Pt ve RuO2-IrO2 metal-oksit elektrotlarının en iyi TOK giderim verimleri sırasıyla %68, %48 ve %42.6 idi.

Kaynakça

  • [1] Yu Y, Xie Y, Ji L, Zhang J, Cai Y, Yang Z. “Water management for industrial development, energy conservation, and subjective attitudes: a comprehensive risk-oriented model to explore the tolerance of unbalanced allocation problem”. Journal of Water and Climate Change, 13(1), 139-157, 2022.
  • [2] Cheng T. “The Production Flow of Cosmetics”. https://enrichbodycare.com/the-production-flow-of-cosmetics/#Step_1_Material_preparation (24.01.2023).
  • [3] Aguiar JB, Martins AM, Almeida C, Ribeiro HM, Marto J. “Water sustainability: A waterless life cycle for cosmetic products”. Sustainable Production and Consumption, 32, 35-51, 2022.
  • [4] Abidemi BL, James OA, Oluwatosin AT, Akinropo OJ, Oraeloka UD, Racheal AE. “Treatment technologies for wastewater from cosmetic industry-A review”. International Journal of Chemical and Biomolecular Science, 4(4), 69-80, 2018.
  • [5] Barrios JA, Becerril E, De León C, Barrera-Díaz C, Jiménez B. “Electrooxidation treatment for removal of emerging pollutants in wastewater sludge”. Fuel, 149, 26-33, 2015.
  • [6] Joss A, Keller E, Alder AC, Göbel A, McArdell CS, Ternes T, Siegrist H. “Removal of pharmaceuticals and fragrances in biological wastewater treatment”. Water Research, 39(14), 3139-3152, 2005.
  • [7] Reif R, Suárez S, Omil F, Lema JM. “Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage”. Desalination, 221(1-3), 511-517, 2008.
  • [8] Esplugas S, Bila DM, Krause LGT, Dezotti M. “Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents”. Journal of Hazardous Materials, 149(3), 631-642, 2007.
  • [9] Bogacki J, Marcinowski P, Zapałowska E, Maksymiec J, Naumczyk J. “Cosmetic wastewater treatment by the ZVI/H2O2 process”. Environmental Technology, 38(20), 2589-2600, 2017.
  • [10] Alvarino T, Suarez S, Katsou E, Vazquez-Padin J, Lema JM, Omil F. “Removal of PPCPs from the sludge supernatant in a one stage nitritation/anammox process”. Water Research, 68, 701-709, 2015.
  • [11] Gkika DA, Mitropoulos AC, Lambropoulou DA, Kalavrouziotis IK, Kyzas GZ. “Cosmetic wastewater treatment technologies: a review”. Environmental Science and Pollution Research, 29(50), 75223-75247, 2022.
  • [12] Muszyński A, Marcinowski P, Maksymiec J, Beskowska K, Kalwarczyk E, Bogacki J. “Cosmetic wastewater treatment with combined light/Fe0/H2O2 process coupled with activated sludge”. Journal of Hazardous Materials, 378, 1-9, 2019.
  • [13] Yenkie KM. “Integrating the three E’s in wastewater treatment: efficient design, economic viability, and environmental sustainability”. Current Opinion in Chemical Engineering, 26, 131-138, 2019.
  • [14] Brillas E, Sirés I, Oturan MA. “Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry”. Chemical Reviews, 109(12), 6570-6631, 2009.
  • [15] Sopaj F, Rodrigo MA, Oturan N, Podvorica FI, Pinson J, Oturan MA. “Influence of the anode materials on the electrochemical oxidation efficiency. Application to oxidative degradation of the pharmaceutical amoxicillin”. Chemical Engineering Journal, 262, 286-294, 2015.
  • [16] Garrido-Cardenas JA, Esteban-García B, Agüera A, Sánchez-Pérez JA, Manzano-Agugliaro F. “Wastewater treatment by advanced oxidation process and their worldwide research trends”. International Journal of Environmental Research and Public Health, 17(1), 1-19, 2020.
  • [17] Metcalf L, Eddy HP, Tchobanoglous G. Wastewater Engineering: Treatment, Disposal, and Reuse. 4th ed. New York, USA, McGraw-Hill, 1991.
  • [18] Gligorovski S, Strekowski R, Barbati S, Vione D. “Environmental implications of hydroxyl radicals (• OH)”. Chemical Reviews, 115(24), 13051-13092, 2015.
  • [19] Tchobanoglus G, Burton F, Stensel HD. Wastewater Engineering: Treatment and Reuse. 4th ed. Boston, USA, McGraw-Hill, 2003.
  • [20] Deng Y, Zhao R. “Advanced oxidation processes (AOPs) in wastewater treatment”. Current Pollution Reports, 1, 167-176, 2015.
  • [21] Newman J, Balsara NP. Electrochemical systems. 4th ed. Berkeley, USA, Wiley, 2021.
  • [22] Panizza M, Cerisola G. “Direct and mediated anodic oxidation of organic pollutants”. Chemical Reviews, 109(12), 6541-6569, 2009.
  • [23] Chiang LC, Chang JE, Wen TC. “Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate”. Water Research, 29(2), 671-678, 1995.
  • [24] Farmer JC, Wang FT, Hawley‐Fedder RA, Lewis PR, Summers LJ, Foiles L. “Electrochemical treatment of mixed and hazardous wastes: oxidation of ethylene glycol and benzene by silver (II)”. Journal of the Electrochemical Society, 139(3), 1-9, 1992.
  • [25] Anglada A, Urtiaga A, Ortiz I. “Contributions of electrochemical oxidation to waste‐water treatment: fundamentals and review of applications”. Journal of Chemical Technology & Biotechnology, 84(12), 1747-1755, 2009.
  • [26] Feng Y, Yang L, Liu J, Logan BE. “Electrochemical technologies for wastewater treatment and resource reclamation”. Environmental Science: Water Research & Technology, 2(5), 800-831, 2016.
  • [27] Deng Y, Englehardt JD. “Electrochemical oxidation for landfill leachate treatment”. Waste Management, 27(3), 380-388, 2007.
  • [28] Martínez-Huitle CA, Brillas E. “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review”. Applied Catalysis B: Environmental, 87(3-4), 105-145, 2009.
  • [29] Dubber D, Gray NF. “Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste”. Journal of Environmental Science and Health Part A, 45(12), 1595-1600, 2010.
  • [30] Hua X, Song X, Yuan M, Donga D. “The factors affecting relationship between COD and TOC of typical papermaking wastewater”. Advances in Computer Science, Intelligent System and Environment, Guangzhou, China, 24-25 September 2011.
  • [31] Moreira FC, Soler J, Fonseca A, Saraiva I, Boaventura RA, Brillas E, Vilar VJ. “Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate”. Water Research, 81, 375-387, 2015.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Orhan Taner Can

Hilal Gündoğdu

Ramazan Keyikoğlu Bu kişi benim

Pınar Sevim Elibol

Ahmet Aygün

Mehmet İşleyen

Yayımlanma Tarihi 29 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 1

Kaynak Göster

APA Can, O. T., Gündoğdu, H., Keyikoğlu, R., Sevim Elibol, P., vd. (2024). Kozmetik sanayi atıksularının boron doped diamond, platin ve metaloksit elektrotlar ile elektrooksidasyon prosesinde arıtılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(1), 81-86.
AMA Can OT, Gündoğdu H, Keyikoğlu R, Sevim Elibol P, Aygün A, İşleyen M. Kozmetik sanayi atıksularının boron doped diamond, platin ve metaloksit elektrotlar ile elektrooksidasyon prosesinde arıtılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2024;30(1):81-86.
Chicago Can, Orhan Taner, Hilal Gündoğdu, Ramazan Keyikoğlu, Pınar Sevim Elibol, Ahmet Aygün, ve Mehmet İşleyen. “Kozmetik Sanayi atıksularının Boron Doped Diamond, Platin Ve Metaloksit Elektrotlar Ile Elektrooksidasyon Prosesinde arıtılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 1 (Şubat 2024): 81-86.
EndNote Can OT, Gündoğdu H, Keyikoğlu R, Sevim Elibol P, Aygün A, İşleyen M (01 Şubat 2024) Kozmetik sanayi atıksularının boron doped diamond, platin ve metaloksit elektrotlar ile elektrooksidasyon prosesinde arıtılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 1 81–86.
IEEE O. T. Can, H. Gündoğdu, R. Keyikoğlu, P. Sevim Elibol, A. Aygün, ve M. İşleyen, “Kozmetik sanayi atıksularının boron doped diamond, platin ve metaloksit elektrotlar ile elektrooksidasyon prosesinde arıtılması”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 1, ss. 81–86, 2024.
ISNAD Can, Orhan Taner vd. “Kozmetik Sanayi atıksularının Boron Doped Diamond, Platin Ve Metaloksit Elektrotlar Ile Elektrooksidasyon Prosesinde arıtılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/1 (Şubat 2024), 81-86.
JAMA Can OT, Gündoğdu H, Keyikoğlu R, Sevim Elibol P, Aygün A, İşleyen M. Kozmetik sanayi atıksularının boron doped diamond, platin ve metaloksit elektrotlar ile elektrooksidasyon prosesinde arıtılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:81–86.
MLA Can, Orhan Taner vd. “Kozmetik Sanayi atıksularının Boron Doped Diamond, Platin Ve Metaloksit Elektrotlar Ile Elektrooksidasyon Prosesinde arıtılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 1, 2024, ss. 81-86.
Vancouver Can OT, Gündoğdu H, Keyikoğlu R, Sevim Elibol P, Aygün A, İşleyen M. Kozmetik sanayi atıksularının boron doped diamond, platin ve metaloksit elektrotlar ile elektrooksidasyon prosesinde arıtılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(1):81-6.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.