Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of photothermal performances of graphene oxide-silver-polyaniline nanocomposites

Yıl 2024, Cilt: 30 Sayı: 3, 414 - 421, 29.06.2024

Öz

In this study, polyaniline (PANI) polymerization was carried out on the surface of graphene oxide (GO) nanosheets by using AgNO3 as an oxidation agent, and GO-Ag-PANI three-component nanocomposite was obtained with a one-step and simple method. As a result of the simultaneous PANI polymerization and Ag nanoparticle formation processes on the surface of the GO nanosheets, the GO surface was homogeneously coated with PANI, and Ag nanoparticles were successfully produced in the PANI polymeric matrix. The prepared nanocomposite has high colloidal stability and strong absorbance in the NIR region. Depending on the photoagent concentration (0.025, 0.05 and 0.1 mg/mL) different laser power densities (1.0, 1.5 and 2.0 W/cm2) were applied at a wavelength of 808 nm, the aqueous dispersion of GO-Ag-PANI exhibited extraordinary maximum temperature difference values and showed a high photothermal conversion efficiency (45.9%). In addition, it was determined that the nanocomposite, which was subjected to repeated heating-cooling cycles, had very high photostability. GO-Ag-PANI three-component nanocomposite with high photothermal performance has great potential for photothermal applications.

Kaynakça

  • [1] Li C, Cheng Y, Li D, An Q, Zhang W, Zhang Y, Fu Y. “Antitumor applications of photothermal agents and photothermal synergistic therapies”. International Journal of Molecular Sciences, 23(14), 7909, 1-16, 2022.
  • [2] Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C. “Nanomaterials as photothermal therapeutic agents”. Progress in Materials Science, 99, 1-26, 2019.
  • [3] Wen H, Tamarov K, Happonen E, Lehto V P, Xu W. Inorganic “Nanomaterials for photothermal‐based cancer theranostics”. Advanced Therapeutics, 4(2), 1-34, 2021.
  • [4] Kim J, Kim J, Jeong C, Kim W J. “Synergistic nanomedicine by combined gene and photothermal therapy”. Advanced Drug Delivery Reviews, 16, 3519-3529, 2015.
  • [5] Mindivan F. “Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 43-48, 2019.
  • [6] Saygılı Canlıdinç R. “Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(7), 1319-1327, 2020.
  • [7] Shafiee A, Iravani S, Varma R S. “Graphene and graphene oxide with anticancer applications: Challenges and future perspectives”. MedComm, 3(1), 1-18, 2022.
  • [8] Laraba S R, Luo W, Rezzoug A, Zahra Q U A, Zhang S, Wu B, Chen W, Xiao L, Yang Y, Li Y. “Graphene-based composites for biomedical applications”. Green Chemistry Letters and Reviews, 15(3), 724-748, 2022.
  • [9] Wang Y, Meng H M, Song G, Li Z, Zhang XB. “Conjugated-polymer-based nanomaterials for photothermal therapy”. ACS Applied Polymer Materials, 2(10), 4258-4272, 2020.
  • [10] Yu C, Xu L, Zhang Y, Timashev P S, Huang Y, Liang X J. “Polymer-based nanomaterials for noninvasive cancer photothermal therapy”. ACS Applied Polymer Materials, 2(10), 4289-4305, 2020.
  • [11] Korupalli C, Kalluru P, Nuthalapati K, Kuthala N, Thangudu S, Vankayala R. “Recent advances of polyaniline-based biomaterials for phototherapeutic treatments of tumors and bacterial infections”. Bioengineering, 7(3), 94, 1-18, 2020.
  • [12] Zhou J, Lu Z, Zhu X, Wang X, Liao Y, Ma Z, Li F. “NIR photothermal therapy using polyaniline nanoparticles”. Biomaterials, 34(37), 9584-9592, 2013.
  • [13] Eltayeb NE, Khan A. “Preparation and properties of newly synthesized Polyaniline@ Graphene oxide/Ag nanocomposite for highly selective sensor application”. Journal of Materials Research and Technology, 9(5), 10459-10467, 2020.
  • [14] Çıplak Z, Yıldız A, Yıldız N. “Green preparation of ternary reduced graphene oxide-au@ polyaniline nanocomposite for supercapacitor application”. Journal of Energy Storage, 32, 1-11, 2020.
  • [15] Soysal F, Çıplak Z, Getiren B, Gökalp C, Yıldız N. “Synthesis of GO-Fe3O4-PANI nanocomposite with excellent NIR absorption property”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578, 1-8, 2019.
  • [16] Nartop P. “Biyosentetik gümüş nanopartiküllerinin Pyracantha coccinea bitkisinin gövde eksplantlarının yüzey sterilizasyonunda kullanımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 759-761, 2017.
  • [17] Carrillo-Torres R C, García-Soto M J, Morales-Chávez S D, Garibay-Escobar A, Hernández-Paredes J, Guzmán R, Barboza-Flores M, Álvarez-Ramos ME. “Hollow Au–Ag bimetallic nanoparticles with high photothermal stability”. RSC Advances, 6(47), 41304-41312, 2016.
  • [18] Li M, Huang L, Wang X, Song Z, Zhao W, Wang Y, Liu J. “Direct generation of Ag nanoclusters on reduced graphene oxide nanosheets for efficient catalysis, antibacteria and photothermal anticancer applications”. Journal of Colloid and Interface Science, 529, 444-451, 2018.
  • [19] Qi X, Huang Y, You S, Xiang Y, Cai E, Mao R, Pan W, Tong X, Dong W, Ye F, Shen J. “Engineering robust Ag‐decorated polydopamine nano‐photothermal platforms to combat bacterial infection and prompt wound healing”. Advanced Science, 9(11), 1-11, 2022.
  • [20] Tan J, Namuangruk S, Kong W, Kungwan N, Guo J, Wang C. “Manipulation of amorphous‐to‐crystalline transformation: Towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability”. Angewandte Chemie International Edition, 55(45), 13979-13984, 2016.
  • [21] Bober P, Stejskal J, Trchova M, Prokes J, Sapurina I. “Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: A new route to conducting composites”. Macromolecules, 43(24), 10406-10413, 2010.
  • [22] Bláha M, Trchová M, Bober P, Morávková Z, Prokeš J, Stejskal J. “Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity”. Materials Chemistry and Physics, 194, 206-218, 2017.
  • [23] Behniafar H, Malekshahinezhad K, Alinia-pouri A. “One-pot methods for preparing polyaniline/Ag nanocomposites via oxidative polymerization of aniline”. Journal of Materials Science: Materials in Electronics, 27(2), 1070-1076, 2016.
  • [24] Chu H J, Lee C Y, Tai N H. “Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode”. Carbon, 80(1), 725-733, 2014.
  • [25] Sadhukhan S, Ghosh T K, Rana D, Roy I, Bhattacharyya A, Sarkar G, Chattopadhyay D. “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property”. Materials Research Bulletin, 79, 41-51, 2016.
  • [26] Feng X, Chen N, Zhou J, Li Y, Huang Z, Zhang L, Yan X. “Facile synthesis of shape-controlled graphene–polyaniline composites for high performance supercapacitor electrode materials”. New Journal of Chemistry, 39(3), 2261-2268, 2015.
  • [27] Han MG, Cho SK, Oh SG, Im SS. “Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micell

Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi

Yıl 2024, Cilt: 30 Sayı: 3, 414 - 421, 29.06.2024

Öz

Bu çalışmada AgNO3’ün oksidasyon ajanı olarak kullanılması ile polianilin (PANI) polizerizasyonu grafen oksit (GO) nanotabakalarının yüzeyinde gerçekleştirilmiş olup tek basamaklı ve basit bir yöntem ile GO-Ag-PANI üç bileşenli nanokompoziti elde edilmiştir. GO nanotabaklarının yüzeyinde eş anlı olarak gerçekleşen PANI polimerizasyonu ve Ag nanotanecik oluşum prosesleri sonucunda GO yüzeyi homojen bir şekilde PANI ile kaplanmış olup Ag nanotanecikleri PANI polimerik matrisinde başarıyla üretilmiştir. Hazırlanan nanokompozit sulu çözeltide yok yüksek kolloidal kararlılık, NIR bölgesinde kuvvetli absorbans yeteneğine sahiptir. 808 nm dalga boyunda uygulanan farklı lazer güç yoğunluğu (1.0, 1.5 ve 2.0 W/cm2) ve fotoajan derişimine (0.025, 0.05 ve 0.1 mg/mL) bağlı olarak GO-Ag-PANI sulu dispersiyonu çok yüksek maksimum sıcaklık farkı değerleri sergilemiş olup, yüksek fototermal dönüşüm verimi (45.9%) ortaya koymuştur. Ayrıca tekrarlı ısıtma-soğutma döngüsüne tabi tutulan nanokompozitin çok yüksek fotokararlılığa da sahip olduğu belirlenmiştir. Yüksek fototermal performans sergileyen GO-Ag-PANI üç bileşenli nanokompoziti fototermal uygulamalar konusunda büyük potansiyele sahiptir.

Kaynakça

  • [1] Li C, Cheng Y, Li D, An Q, Zhang W, Zhang Y, Fu Y. “Antitumor applications of photothermal agents and photothermal synergistic therapies”. International Journal of Molecular Sciences, 23(14), 7909, 1-16, 2022.
  • [2] Chen J, Ning C, Zhou Z, Yu P, Zhu Y, Tan G, Mao C. “Nanomaterials as photothermal therapeutic agents”. Progress in Materials Science, 99, 1-26, 2019.
  • [3] Wen H, Tamarov K, Happonen E, Lehto V P, Xu W. Inorganic “Nanomaterials for photothermal‐based cancer theranostics”. Advanced Therapeutics, 4(2), 1-34, 2021.
  • [4] Kim J, Kim J, Jeong C, Kim W J. “Synergistic nanomedicine by combined gene and photothermal therapy”. Advanced Drug Delivery Reviews, 16, 3519-3529, 2015.
  • [5] Mindivan F. “Grafen oksit (GO) ve indirgenmiş grafen oksit (RGO) dolgulu PVC kompozitlerin mekanik özelliklerinin karşılaştırılması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(1), 43-48, 2019.
  • [6] Saygılı Canlıdinç R. “Grafen/Grafen oksit temelli adsorbanların katı faz özütleme tekniğinde kullanılabilirliği hakkında literatür araştırması”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(7), 1319-1327, 2020.
  • [7] Shafiee A, Iravani S, Varma R S. “Graphene and graphene oxide with anticancer applications: Challenges and future perspectives”. MedComm, 3(1), 1-18, 2022.
  • [8] Laraba S R, Luo W, Rezzoug A, Zahra Q U A, Zhang S, Wu B, Chen W, Xiao L, Yang Y, Li Y. “Graphene-based composites for biomedical applications”. Green Chemistry Letters and Reviews, 15(3), 724-748, 2022.
  • [9] Wang Y, Meng H M, Song G, Li Z, Zhang XB. “Conjugated-polymer-based nanomaterials for photothermal therapy”. ACS Applied Polymer Materials, 2(10), 4258-4272, 2020.
  • [10] Yu C, Xu L, Zhang Y, Timashev P S, Huang Y, Liang X J. “Polymer-based nanomaterials for noninvasive cancer photothermal therapy”. ACS Applied Polymer Materials, 2(10), 4289-4305, 2020.
  • [11] Korupalli C, Kalluru P, Nuthalapati K, Kuthala N, Thangudu S, Vankayala R. “Recent advances of polyaniline-based biomaterials for phototherapeutic treatments of tumors and bacterial infections”. Bioengineering, 7(3), 94, 1-18, 2020.
  • [12] Zhou J, Lu Z, Zhu X, Wang X, Liao Y, Ma Z, Li F. “NIR photothermal therapy using polyaniline nanoparticles”. Biomaterials, 34(37), 9584-9592, 2013.
  • [13] Eltayeb NE, Khan A. “Preparation and properties of newly synthesized Polyaniline@ Graphene oxide/Ag nanocomposite for highly selective sensor application”. Journal of Materials Research and Technology, 9(5), 10459-10467, 2020.
  • [14] Çıplak Z, Yıldız A, Yıldız N. “Green preparation of ternary reduced graphene oxide-au@ polyaniline nanocomposite for supercapacitor application”. Journal of Energy Storage, 32, 1-11, 2020.
  • [15] Soysal F, Çıplak Z, Getiren B, Gökalp C, Yıldız N. “Synthesis of GO-Fe3O4-PANI nanocomposite with excellent NIR absorption property”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 578, 1-8, 2019.
  • [16] Nartop P. “Biyosentetik gümüş nanopartiküllerinin Pyracantha coccinea bitkisinin gövde eksplantlarının yüzey sterilizasyonunda kullanımı”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 23(6), 759-761, 2017.
  • [17] Carrillo-Torres R C, García-Soto M J, Morales-Chávez S D, Garibay-Escobar A, Hernández-Paredes J, Guzmán R, Barboza-Flores M, Álvarez-Ramos ME. “Hollow Au–Ag bimetallic nanoparticles with high photothermal stability”. RSC Advances, 6(47), 41304-41312, 2016.
  • [18] Li M, Huang L, Wang X, Song Z, Zhao W, Wang Y, Liu J. “Direct generation of Ag nanoclusters on reduced graphene oxide nanosheets for efficient catalysis, antibacteria and photothermal anticancer applications”. Journal of Colloid and Interface Science, 529, 444-451, 2018.
  • [19] Qi X, Huang Y, You S, Xiang Y, Cai E, Mao R, Pan W, Tong X, Dong W, Ye F, Shen J. “Engineering robust Ag‐decorated polydopamine nano‐photothermal platforms to combat bacterial infection and prompt wound healing”. Advanced Science, 9(11), 1-11, 2022.
  • [20] Tan J, Namuangruk S, Kong W, Kungwan N, Guo J, Wang C. “Manipulation of amorphous‐to‐crystalline transformation: Towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability”. Angewandte Chemie International Edition, 55(45), 13979-13984, 2016.
  • [21] Bober P, Stejskal J, Trchova M, Prokes J, Sapurina I. “Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: A new route to conducting composites”. Macromolecules, 43(24), 10406-10413, 2010.
  • [22] Bláha M, Trchová M, Bober P, Morávková Z, Prokeš J, Stejskal J. “Polyaniline: Aniline oxidation with strong and weak oxidants under various acidity”. Materials Chemistry and Physics, 194, 206-218, 2017.
  • [23] Behniafar H, Malekshahinezhad K, Alinia-pouri A. “One-pot methods for preparing polyaniline/Ag nanocomposites via oxidative polymerization of aniline”. Journal of Materials Science: Materials in Electronics, 27(2), 1070-1076, 2016.
  • [24] Chu H J, Lee C Y, Tai N H. “Green reduction of graphene oxide by Hibiscus sabdariffa L. to fabricate flexible graphene electrode”. Carbon, 80(1), 725-733, 2014.
  • [25] Sadhukhan S, Ghosh T K, Rana D, Roy I, Bhattacharyya A, Sarkar G, Chattopadhyay D. “Studies on synthesis of reduced graphene oxide (RGO) via green route and its electrical property”. Materials Research Bulletin, 79, 41-51, 2016.
  • [26] Feng X, Chen N, Zhou J, Li Y, Huang Z, Zhang L, Yan X. “Facile synthesis of shape-controlled graphene–polyaniline composites for high performance supercapacitor electrode materials”. New Journal of Chemistry, 39(3), 2261-2268, 2015.
  • [27] Han MG, Cho SK, Oh SG, Im SS. “Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micell
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kimya Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Zafer Çıplak

Furkan Soysal

Yayımlanma Tarihi 29 Haziran 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 30 Sayı: 3

Kaynak Göster

APA Çıplak, Z., & Soysal, F. (2024). Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 30(3), 414-421.
AMA Çıplak Z, Soysal F. Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Haziran 2024;30(3):414-421.
Chicago Çıplak, Zafer, ve Furkan Soysal. “Grafen Oksit-gümüş-Polianilin Nanokompozitlerinin Fototermal performanslarının Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30, sy. 3 (Haziran 2024): 414-21.
EndNote Çıplak Z, Soysal F (01 Haziran 2024) Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30 3 414–421.
IEEE Z. Çıplak ve F. Soysal, “Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 3, ss. 414–421, 2024.
ISNAD Çıplak, Zafer - Soysal, Furkan. “Grafen Oksit-gümüş-Polianilin Nanokompozitlerinin Fototermal performanslarının Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 30/3 (Haziran 2024), 414-421.
JAMA Çıplak Z, Soysal F. Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30:414–421.
MLA Çıplak, Zafer ve Furkan Soysal. “Grafen Oksit-gümüş-Polianilin Nanokompozitlerinin Fototermal performanslarının Incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 30, sy. 3, 2024, ss. 414-21.
Vancouver Çıplak Z, Soysal F. Grafen oksit-gümüş-polianilin nanokompozitlerinin fototermal performanslarının incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2024;30(3):414-21.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.