Araştırma Makalesi
BibTex RIS Kaynak Göster

Alçak gerilim şebekelerinde PV kaynaklı gerilim artışlarına karşı BESS kullanımının yerel ve merkezi kontrolörler aracılığıyla değerlendirilmesi

Yıl 2025, Cilt: 31 Sayı: 1, 55 - 66, 27.02.2025

Öz

Günümüzde yaşanan iklim krizi nedeniyle, yenilenebilir enerjinin önemi her geçen gün artmaktadır. Son kullanıcıya ekonomik faydaları ve alım için oluşturulan teşvikler nedeniyle, konutlar bu enerji türünün kullanımına ivme katmıştır. Yenilenebilir enerjinin önemli bir parçası olan fotovoltaik (PV) sistemler, konutlarda ihtiyaç duyulan enerji tedarikini desteklemektedir. Herhangi bir konutta, PV sistemin ürettiği enerji çıkışının konutta tüketilenden fazla olduğu zamanlarda, artan enerji şebeke tarafına doğru enjekte edilmiş olur. Bu durum konut müşterisine ekonomik yarar sağlarken, konutun bağlı bulunduğu düğüm noktasında gerilim artışlarına neden olur. Bu etken enerji dağıtım firmalarını ekonomik olarak avantajlı, müşterileri ise gerilim seviyesinde olumsuz artış olarak etkileyebilmektedir. Bu sorunun muhtemel çözümlerinden biri, PV sisteme bağlı batarya enerji depolama sistemleri (BEDS) kullanmaktır. Bu durumun simüle edilebilmesi için, bu çalışmada gerçek bir BEDS: Tesla Powerwall 2, modellenmiştir. BEDS’in gerilim artışına karşı etkin kullanımı için iki farklı kontrol yöntemi (lokal ve merkezi) analiz edilmiştir. Ek olarak her yöntem için, BEDS’in enerji kapasitesi (kWh) ve şarj/deşarj gücü (kW) değiştirilerek, BEDS’in gerilim artışları üzerine olan ters etkisi ölçümlenmiştir. Sonuç olarak merkezi kontrol’ün lokal kontrol’e göre gerilim seviyesini yönetmekte daha efektif ve uygulama açısından daha gerçekçi olduğu görülmüştür. Ayrıca her iki kontrol yönteminde de BEDS enerji kapasitesi (kWh) arttırıldığında veya BEDS şarj/deşarj gücü (kW) değiştirildiğinde, gerilim artışının daha az olduğu görülmüştür. Bu sonuçların konutlardaki PV sistemler ile oluşacak sorunların oluşmasını engellemesine ve/veya yönetilmesine katkı sunması beklenmektedir.

Kaynakça

  • [1] International Renewable Energy Agency. “Renewable Power Generation Costs in 2020”. Abu Dhabi, BAE, Scientific Report, 2021.
  • [2] Johnson RC, Mayfield M, Beck SBM. “Battery energy storage for management of LV network operational violations: a multi-feeder analysis”. 3rd Annual Conference in Energy Storage and Its Applications, 3rd CDT-ESA-AC, Sheffield, UK, 11-12 September 2018.
  • [3] Kirchsteiger H, Landl S. “Avoiding PV-Induced overvoltage through grid-connected batteries using model predictive control”. Environmental and Climate Technologies, 27(1), 711-723, 2023.
  • [4] Sharma, V, Haque, MH, Aziz, S, Kauschke, T. “Smart inverter and battery storage controls to reduce financial loss due to overvoltage-induced PV curtailment in distribution feeders”. Sustainable Energy, Grids and Networks, 34, 2352-4677, 2023.
  • [5] Eidissen M. Utilizing Batteries in the Norwegian Distribution Grid. Master’s Thesis, UiT The Arctic University of Norway, Faculty of Science and Technology, Tromsø, Norway, 2023.
  • [6] International Energy Agency. “Energy Storage”. Paris, France, 2021. https://www.iea.org/reports/energy-storage (02.04.2023).
  • [7] Lamberti F, Calderaro V, Galdi V, Piccolo A, Graditi G. “Impact analysis of distributed PV and energy storage systems in unbalanced LV networks”. 2015 IEEE Eindhoven PowerTech, PowerTech 2015, Eindhoven, Netherlands, 29 June 2015.
  • [8] Giannitrapani A, Paoletti S, Vicino A, Zarrilli D. “Optimal Allocation of Energy Storage Systems for Voltage Control in LV Distribution Networks”. IEEE Transactions on Smart Grid, 8(6), 2859-2870, 2017.
  • [9] Crossland AF, Jones D, Wade NS, Walker SL. “Comparison of the location and rating of energy storage for renewables integration in residential low voltage networks with overvoltage constraints”. Energies, 11(8), 1-16, 2018.
  • [10] Bucciarelli M, Giannitrapani A, Paoletti S, Vicino A, Zarrilli D. “Energy storage sizing for voltage control in LV networks under uncertainty on PV generation”. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, Italy, 07-09 September 2016.
  • [11] Ariyaratna P, Muttaqi K, Sutanto D. “The sizing of battery energy storage for the mitigation of slow and fast fluctuations in rooftop solar PV output”. 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Auckland, New Zealand, 04-07 December 2017.
  • [12] Parthasarathy C, Hafezi H, Laaksonen H, Kauhaniemi K. “Modelling and simulation of hybrid PV BES systems as flexible resources in smartgrids-Sundom smart grid case”. 2019 IEEE Milan PowerTech, PowerTech 2019, Milan, Italy, 23-27 June 2019.
  • [13] Johnson RC, Mayfield M, Beck SBM. “Optimal placement, sizing, and dispatch of multiple BES systems on UK low voltage residential networks”. Journal of Energy Storage, 17, 272-286, 2018.
  • [14] Von Appen J, Stetz T, Braun M, Schmiegel A. “Local voltage control strategies for PV storage systems in distribution grids”. IEEE Transactions on Smart Grid, 5(2), 1002-1009, 2014.
  • [15] Aydin MS, Alnaser SW, Althaher SZ. “Using OLTC-Fitted distribution transformer to increase residential PV hosting capacity: decentralized voltage management approach”. Energies, 15(13), 1-19, 2022.
  • [16] Gao X, Sossan F, Christakou K, Paolone M, Liserre M. “Concurrent Voltage Control and Dispatch of Active Distribution Networks by Means of Smart Transformer and Storage”. IEEE Transactions on Industrial Electronics, 65(8), 6657-6666, 2018.
  • [17] Wang J, Hashemi S, You S, Troholt C. “Active and reactive power support of MV distribution systems using battery energy storage”. 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22-25 March 2017.
  • [18] Richardson I, Thomson M. “Integrated simulation of photovoltaic micro-generation and domestic electricity demand: a one-minute resolution open-source model”. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(1) 73-81, 2013.
  • [19] Çiftçi S, Solak M, Kuncan M. “Powered by the sun: designing and analyzing technical and economic aspects of a school sustained by photovoltaics”. Journal of Mechatronics and Artificial Intelligence in Engineering 1(1), 21-32, 2020.
  • [20] Tesla: Electric Cars, Solar & Clean Energy. “Technical specifications of Tesla Powerwall 2”. https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall_2_AC_GW2_UK-EN_Installation_Manual_0.pdf (03.04.2023).
  • [21] Dugan RC, McDermott TE. “An open source platform for collaborating on smart grid research”. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24-28 July 2011.
  • [22] British Standards Institution. “Voltage Characteristics of Electricity Supplied by Public Electricity Networks”. BS EN 50160, 2010. https://www.bsigroup.com (03.04.2023).

Assessing the use of BESS against PV-induced voltage increases on low voltage networks through local and centralized controllers

Yıl 2025, Cilt: 31 Sayı: 1, 55 - 66, 27.02.2025

Öz

The value of renewable energy systems has been increasing due to the current global climate change. Given the economic benefits to the end users and the incentives created for the uptake, householders have accelerated the use of this form of energy. Photovoltaic (PV) systems, an important part of renewable energy, assist the energy provision needed in households. In any residences, once the harvesting energy produced by the PV system is greater than the amount consumed in the household, the remaining energy is injected to the grid. While this situation provides economic benefit to the residential customer, it might cause voltage increases at the node which the residence is connected to. This factor might affect profitably utility companies and customers as a negative increase in voltage level. One of the possible solutions to this problem is to deploy battery energy storage systems (BESS) connected to the PV system in a household. In order to simulate this, a real BESS: Tesla Powerwall 2 was modeled in this study. Two different control methods (local and central) were investigated for the effective use of BESS against voltage increases. In addition, for each method, the energy capacity (kWh) and charge/discharge power (kW) of BESS were changed and the adverse effect of BESS on voltage increases was quantified. As a result, it is seen that central control is more effective in managing the voltage rise and compared to local control, it is more realistic in terms of utilization. Additionally, in both control methods, it is observed that when the BESS energy capacity (kWh) is increased or the BESS charge/discharge power (kW) is altered, the rise in voltage level is reduced. It is expected that these results will contribute to preventing and/or managing problems that may occur with PV systems in households.

Kaynakça

  • [1] International Renewable Energy Agency. “Renewable Power Generation Costs in 2020”. Abu Dhabi, BAE, Scientific Report, 2021.
  • [2] Johnson RC, Mayfield M, Beck SBM. “Battery energy storage for management of LV network operational violations: a multi-feeder analysis”. 3rd Annual Conference in Energy Storage and Its Applications, 3rd CDT-ESA-AC, Sheffield, UK, 11-12 September 2018.
  • [3] Kirchsteiger H, Landl S. “Avoiding PV-Induced overvoltage through grid-connected batteries using model predictive control”. Environmental and Climate Technologies, 27(1), 711-723, 2023.
  • [4] Sharma, V, Haque, MH, Aziz, S, Kauschke, T. “Smart inverter and battery storage controls to reduce financial loss due to overvoltage-induced PV curtailment in distribution feeders”. Sustainable Energy, Grids and Networks, 34, 2352-4677, 2023.
  • [5] Eidissen M. Utilizing Batteries in the Norwegian Distribution Grid. Master’s Thesis, UiT The Arctic University of Norway, Faculty of Science and Technology, Tromsø, Norway, 2023.
  • [6] International Energy Agency. “Energy Storage”. Paris, France, 2021. https://www.iea.org/reports/energy-storage (02.04.2023).
  • [7] Lamberti F, Calderaro V, Galdi V, Piccolo A, Graditi G. “Impact analysis of distributed PV and energy storage systems in unbalanced LV networks”. 2015 IEEE Eindhoven PowerTech, PowerTech 2015, Eindhoven, Netherlands, 29 June 2015.
  • [8] Giannitrapani A, Paoletti S, Vicino A, Zarrilli D. “Optimal Allocation of Energy Storage Systems for Voltage Control in LV Distribution Networks”. IEEE Transactions on Smart Grid, 8(6), 2859-2870, 2017.
  • [9] Crossland AF, Jones D, Wade NS, Walker SL. “Comparison of the location and rating of energy storage for renewables integration in residential low voltage networks with overvoltage constraints”. Energies, 11(8), 1-16, 2018.
  • [10] Bucciarelli M, Giannitrapani A, Paoletti S, Vicino A, Zarrilli D. “Energy storage sizing for voltage control in LV networks under uncertainty on PV generation”. 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a better tomorrow (RTSI), Bologna, Italy, 07-09 September 2016.
  • [11] Ariyaratna P, Muttaqi K, Sutanto D. “The sizing of battery energy storage for the mitigation of slow and fast fluctuations in rooftop solar PV output”. 2017 IEEE Innovative Smart Grid Technologies-Asia (ISGT-Asia), Auckland, New Zealand, 04-07 December 2017.
  • [12] Parthasarathy C, Hafezi H, Laaksonen H, Kauhaniemi K. “Modelling and simulation of hybrid PV BES systems as flexible resources in smartgrids-Sundom smart grid case”. 2019 IEEE Milan PowerTech, PowerTech 2019, Milan, Italy, 23-27 June 2019.
  • [13] Johnson RC, Mayfield M, Beck SBM. “Optimal placement, sizing, and dispatch of multiple BES systems on UK low voltage residential networks”. Journal of Energy Storage, 17, 272-286, 2018.
  • [14] Von Appen J, Stetz T, Braun M, Schmiegel A. “Local voltage control strategies for PV storage systems in distribution grids”. IEEE Transactions on Smart Grid, 5(2), 1002-1009, 2014.
  • [15] Aydin MS, Alnaser SW, Althaher SZ. “Using OLTC-Fitted distribution transformer to increase residential PV hosting capacity: decentralized voltage management approach”. Energies, 15(13), 1-19, 2022.
  • [16] Gao X, Sossan F, Christakou K, Paolone M, Liserre M. “Concurrent Voltage Control and Dispatch of Active Distribution Networks by Means of Smart Transformer and Storage”. IEEE Transactions on Industrial Electronics, 65(8), 6657-6666, 2018.
  • [17] Wang J, Hashemi S, You S, Troholt C. “Active and reactive power support of MV distribution systems using battery energy storage”. 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada, 22-25 March 2017.
  • [18] Richardson I, Thomson M. “Integrated simulation of photovoltaic micro-generation and domestic electricity demand: a one-minute resolution open-source model”. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 227(1) 73-81, 2013.
  • [19] Çiftçi S, Solak M, Kuncan M. “Powered by the sun: designing and analyzing technical and economic aspects of a school sustained by photovoltaics”. Journal of Mechatronics and Artificial Intelligence in Engineering 1(1), 21-32, 2020.
  • [20] Tesla: Electric Cars, Solar & Clean Energy. “Technical specifications of Tesla Powerwall 2”. https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall_2_AC_GW2_UK-EN_Installation_Manual_0.pdf (03.04.2023).
  • [21] Dugan RC, McDermott TE. “An open source platform for collaborating on smart grid research”. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24-28 July 2011.
  • [22] British Standards Institution. “Voltage Characteristics of Electricity Supplied by Public Electricity Networks”. BS EN 50160, 2010. https://www.bsigroup.com (03.04.2023).
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği (Diğer)
Bölüm Makale
Yazarlar

Muhammed Sait Aydın

Sabri Çiftçi Bu kişi benim

Yayımlanma Tarihi 27 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 31 Sayı: 1

Kaynak Göster

APA Aydın, M. S., & Çiftçi, S. (2025). Alçak gerilim şebekelerinde PV kaynaklı gerilim artışlarına karşı BESS kullanımının yerel ve merkezi kontrolörler aracılığıyla değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31(1), 55-66.
AMA Aydın MS, Çiftçi S. Alçak gerilim şebekelerinde PV kaynaklı gerilim artışlarına karşı BESS kullanımının yerel ve merkezi kontrolörler aracılığıyla değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. Şubat 2025;31(1):55-66.
Chicago Aydın, Muhammed Sait, ve Sabri Çiftçi. “Alçak Gerilim şebekelerinde PV Kaynaklı Gerilim artışlarına karşı BESS kullanımının Yerel Ve Merkezi kontrolörler aracılığıyla değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31, sy. 1 (Şubat 2025): 55-66.
EndNote Aydın MS, Çiftçi S (01 Şubat 2025) Alçak gerilim şebekelerinde PV kaynaklı gerilim artışlarına karşı BESS kullanımının yerel ve merkezi kontrolörler aracılığıyla değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31 1 55–66.
IEEE M. S. Aydın ve S. Çiftçi, “Alçak gerilim şebekelerinde PV kaynaklı gerilim artışlarına karşı BESS kullanımının yerel ve merkezi kontrolörler aracılığıyla değerlendirilmesi”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 1, ss. 55–66, 2025.
ISNAD Aydın, Muhammed Sait - Çiftçi, Sabri. “Alçak Gerilim şebekelerinde PV Kaynaklı Gerilim artışlarına karşı BESS kullanımının Yerel Ve Merkezi kontrolörler aracılığıyla değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi 31/1 (Şubat 2025), 55-66.
JAMA Aydın MS, Çiftçi S. Alçak gerilim şebekelerinde PV kaynaklı gerilim artışlarına karşı BESS kullanımının yerel ve merkezi kontrolörler aracılığıyla değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31:55–66.
MLA Aydın, Muhammed Sait ve Sabri Çiftçi. “Alçak Gerilim şebekelerinde PV Kaynaklı Gerilim artışlarına karşı BESS kullanımının Yerel Ve Merkezi kontrolörler aracılığıyla değerlendirilmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, c. 31, sy. 1, 2025, ss. 55-66.
Vancouver Aydın MS, Çiftçi S. Alçak gerilim şebekelerinde PV kaynaklı gerilim artışlarına karşı BESS kullanımının yerel ve merkezi kontrolörler aracılığıyla değerlendirilmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 2025;31(1):55-66.





Creative Commons Lisansı
Bu dergi Creative Commons Al 4.0 Uluslararası Lisansı ile lisanslanmıştır.