A bout of upper body wingate anaerobic power and capacity test alters blood rheology in untrained individuals.
Yıl 2020,
, 248 - 256, 14.05.2020
Fatma Ünver
,
Emine Kılıç-toprak
,
Bilal Utku Alemdaroğlu
Özgen Kılıç-erkek
Yasin Özdemir
Burak Oymak
Vural Küçükatay
,
Ahmet Baki Yağcı
Melek Bor-küçükatay
Öz
Purpose: The aim of this study was to investigate the acute effects of a single bout of upper body WAnT on hemorheology (erythrocyte deformability, aggregation) and total oxidant/antioxidant status (TOS/TAS) in untrained individuals.
Materials and Methods: Fourteen sedentary healthy men (age 21.86±0.55 years) performed upper body 30 s Wingate Test. Blood was collected before and following the exercise. Hemorheological parameters were determined by an ektacytometer. TOS/TAS were measured using a commercial kit and blood lactate concentration was determined by a lactate analyzer.
Results: One session of upper body WAnT has acute effects on circulation by reducing red blood cell (RBC) deformability and increasing erythrocyte aggregation, lactate concentration and TOS in sedentary individuals.
Conclusion: Altered hemorheological parameters may be explained by the oxidative stress enhancing effect of exercise.
Destekleyen Kurum
Pamukkale University Scientific Research Projects Coordination Unit
Proje Numarası
2017HZDP028
Teşekkür
Part of this work was presented as a poster at 43rd National Physiology Congress, Denizli, 7-10 September 2017, Acta Physiologica, Special Issue Turkish Society of Physiological Sciences Volume 221, Supplement S713, September 2017, Page 102.
Kaynakça
- Hawley JA, Williams MM, Vickovic MM, Handcock PJ. Muscle power predicts freestyle swimming performance. Br J Sports Med 1992;26:151-155. https://doi.org/10.1136/bjsm.26.3.151
- Koutedakis Y, Sharp NC. A modified Wingate test for measuring anaerobic work of the upper body in junior rowers. Br J Sports Med 1986;20:153-156.
- Zinner C, Morales-Alamo D , Ørtenblad N , et al. The physiological mechanisms of performance enhancement with sprint interval training differ between the upper and lower extremities in humans. Front Physiol 2016;7:426. https://doi.org/10.3389/fphys.2016.00426
- Gillen JB , Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS One 2016;11:e0154075. https://doi.org/10.1371/journal.pone.0154075 Holloway TM, Spriet LL. CrossTalk opposing view: High intensity interval training does not have a role in risk reduction or treatment of disease. J. Physiol 2015;593:5219-5221. https://doi.org/10.1113/JP271039
- Wisløff U, Coombes JS., Rognmo Ø. Cross Talk proposal: High intensity interval training does have a role in risk reduction or treatment of disease. J Physiol 2015;593: 5215–5217. https://doi.org/10.1113/JP271041
- Calbet JA, Holmberg HC, Rosdahl H, van Hall G, Jensen-Urstad M, Saltin B. Why do arms extract less oxygen than legs during exercise? Am J Physiol Regul Integr Comp Physiol 2005;289:R1448-R1458. https://doi.org/10.1152/ajpregu.00824.2004
- Sawka MN. Physiology of upper body exercise. Exerc Sport Sci Rev 1986;14:175-211.
- Sanchis-Moysi J, Idoate F, Olmedillas H, et al. The upper extremity of the professional tennis player: muscle volumes, fiber-type distribution and muscle strength. Scand J Med Sci Sports 2009;20:524–534. https://doi.org/10.1111/j.1600-0838.2009.00969.x
- Weber CL, Chia M, Inbar O. Gender differences in anaerobic power of the arms and legs--a scaling issue. Med Sci Sports Exerc 2006;38:129–137.
- Lovell D, Kerr A, Wiegand A, Solomon C, Harvey L, McLellan C. The contribution of energy systems during the upper body Wingate anaerobic test. Appl Physiol Nutr Metab 2003;38:216–219. https://doi.org/10.1139/apnm-2012-0101
- Brun JF, Khaled S, Raynaud E, Bouix D, Micallef JP, Orsetti A. The triphasic effects of exercise on blood rheology: which relevance to physiology and pathophysiology? Clin Hemorheol Microcirc 1998;19:89–104.
- Neuhaus D, Gaehtgens P. Haemorrheology and long term exercise. Sport Med 1994;18:10–21. https://doi.org/10.2165/00007256-199418010-00003
- Szygula Z. Erythrocytic system under the influence of physical exercise and training. Sport Med 1990;10:181–197. https://doi.org/10.2165/00007256-199010030-00004
- Yalcin O, Erman A, Muratli S, Bor-Kucukatay M, Baskurt OK. Time course of hemorheological alterations after heavy anaerobic exercise in untrained human subjects. J Appl Physiol 2003;94:997–1002. https://doi.org/10.1152/japplphysiol.00368.2002
- Muravyov AV, Draygin SV, Eremin NN, Muravyov AA. The microrheological behavior of young and old red blood cells in athletes. Clin Hemorheol Microcirc 2002;26:183–188.
- Baskurt OK, Meiselman HJ. Erythrocyte aggregation: basic aspects and clinical importance. Clin Hemorheol Microcirc 2013;53:23–37. https://doi.org/10.3233/CH-2012-1573.
- Franco BL, Signorelli GR, Trajano GS, Costa PB, de Oliveira CG. Acute effects of three different stretching protocols on the wingate test performance. J Sports Sci Med 2012;11:1–7.
- Inbar O, Bar-Or O, Skinner JS. The Wingate anaerobic test. John Wiley & Sons 1996.
- Hawley JA, Williams MM. Relationship between upper body anaerobic power and freestyle swimming performance. Int J Sports Med. 1991;12:1–5. https://doi.org/10.1055/s-2007-1024645
- Baskurt OK, Boynard M, Cokelet GC, et al. New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc. 2009;42:75–97. https://doi.org/10.3233/CH-2009-1202
- Hardeman MR, Goedhart PT, Shin S. Methods in hemorheology, Biomedical and Health Research-Commission of the European Communities then ios Press 2007;69: 242
- Erel O. A new automated colorimetric method for measuring total oxidant status, Clin Biochem 2005;38:1103-11. https://doi.org/10.1016/j.clinbiochem.2005.08.008
- Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004;37:277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
- Kosecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress in children exposed to passive smoking. Int J Cardiol 2005;100:61–64. https://doi.org/10.1016/j.ijcard.2004.05.069
- El-Sayed MS, Ali N, El-Sayed Ali Z. Haemorheology in exercise and training. Sport Med 2005;35:649–670. https://doi.org/10.2165/00007256-200535080-00001
- Yalcin O, Bor-Kucukatay M, Senturk UK, Baskurt OK. Effects of swimming exercise on red blood cell rheology in trained and untrained rats. J Appl Physiol 2000;88:2074–2080. https://doi.org/10.1152/jappl.2000.88.6.2074
- Bouix D, Peyreigne C, Raynaud E, Monnier JF, Micallef JP, Brun JF. Relationships among body composition, hemorheology and exercise performance in rugbymen. Clin Hemorheol Microcirc 1998;19:245–254.
- Baskurt OK, Meiselman HJ. Activated polymorphonuclear leukocytes affect red blood cell aggregability. J Leukoc Biol 1998;63:89–93. https://doi.org/10.1002/jlb.63.1.89 Varlet-Marie E, Gaudard A, Monnier JF,et al. Reduction of red blood cell disaggregability during submaximal exercise: relationship with fibrinogen levels. Clin Hemorheol Microcirc 2003;28:139–149. Rampling MW. Red cell aggregation and yield stress. Clin blood Rheol 1988;1:45–64. Senturk UK, Yalcin O, Gunduz F, Kuru O, Meiselman HJ, Baskurt OK. Effect of antioxidant vitamin treatment on the time course of hematological and hemorheological alterations after an exhausting exercise episode in human subjects. J Appl Physiol 2005;98:1272–1279. https://doi.org/10.1152/japplphysiol.00875.2004 Pepe H, Balci SS, Revan S, Akalin PP, Kurtoğlu F. Comparison of oxidative stress and antioxidant capacity before and after running exercises in both sexes. Gend Med 2009;6:587–595. https://doi.org/10.1016/j.genm.2009.10.001 Roque FR, Briones AM, Garcia-Redondo AB, et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol 2013;168:686–703. https://doi.org/10.1111/j.1476-5381.2012.02224.x. Connes P, Simmonds MJ, Brun JF, Baskurt OK. Exercise hemorheology: classical data, recent findings and unresolved issues. Clin Hemorheol Microcirc 2013;53:187–199. https://doi.org/10.3233/CH-2012-1643 Brun JF, Varlet-Marie E, Romain AJ, Guiraudou M, Raynaud de Mauverger E. Exercise hemorheology: Moving from old simplistic paradigms to a more complex picture. Clin Hemorheol Microcirc 2013;55:15–27. https://doi.org/10.3233/CH-131686. Lipowsky HH, Cram LE, Justice W, Eppihimer MJ. Effect of Erythrocyte Deformability on in Vivo Red Cell Transit Time and Hematocrit and Their Correlation with in Vitro Filterability. Microvasc Res 1993;46:43–64. https://doi.org/10.1006/mvre.1993.1034
- Driessen GK, Haest CW, Heidtmann H, Kamp D, Schmid-Schönbein H. Effect of reduced red cell "deformability" on flow velocity in capillaries of rat mesentery. Pflugers Arch 1980;388:75–78. https://doi.org/10.1007/BF00582631
Tek seans uygulanan üst ekstremite wingate anaerobik güç ve kapasite testi sedanter bireylerde kan reolojisini değiştirir.
Yıl 2020,
, 248 - 256, 14.05.2020
Fatma Ünver
,
Emine Kılıç-toprak
,
Bilal Utku Alemdaroğlu
Özgen Kılıç-erkek
Yasin Özdemir
Burak Oymak
Vural Küçükatay
,
Ahmet Baki Yağcı
Melek Bor-küçükatay
Öz
Amaç: Çalışmamızın amacı sedanter bireylerde tek seans uygulanan üst ekstremite WanT’ın hemoreoloji (eritrosit deformabilite, aggregasyon) ve total oksidan/antioksidan durum (TOS/TAS) üzerine etkilerini araştırmaktır.
Gereç ve Yöntem: 30 sn’lik üst ekstremite Wingate testine 14 sedanter sağlıklı erkek (ort yaş 21,86±0,55 yıl) birey dahil edilmiştir. Egzersizden önce ve sonra kan örnekleri toplanmıştır. Hemoreolojik parametreler ektasitometre ile değerlendirilmiştir. TOS/TAS ticari bir kit aracılığıyla ve kan laktat konsantrasyonu ise laktat analizörü ile ölçülmüştür.
Bulgular: Tek seans uygulanan üst ekstremite WanT’ın sedanter bireylerde ertirosit deformabilitesini azaltması ve eritrosit agregasyonu, laktat konsantrasyonu ve TOS düzeyini arttırması dolaşım üzerindeki akut etkileridir.
Sonuç: Hemoreolojik parametrelerdeki değişim, egzersizin oksidatif stresi arttırıcı etkisi ile açıklanabilir.
Proje Numarası
2017HZDP028
Kaynakça
- Hawley JA, Williams MM, Vickovic MM, Handcock PJ. Muscle power predicts freestyle swimming performance. Br J Sports Med 1992;26:151-155. https://doi.org/10.1136/bjsm.26.3.151
- Koutedakis Y, Sharp NC. A modified Wingate test for measuring anaerobic work of the upper body in junior rowers. Br J Sports Med 1986;20:153-156.
- Zinner C, Morales-Alamo D , Ørtenblad N , et al. The physiological mechanisms of performance enhancement with sprint interval training differ between the upper and lower extremities in humans. Front Physiol 2016;7:426. https://doi.org/10.3389/fphys.2016.00426
- Gillen JB , Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS One 2016;11:e0154075. https://doi.org/10.1371/journal.pone.0154075 Holloway TM, Spriet LL. CrossTalk opposing view: High intensity interval training does not have a role in risk reduction or treatment of disease. J. Physiol 2015;593:5219-5221. https://doi.org/10.1113/JP271039
- Wisløff U, Coombes JS., Rognmo Ø. Cross Talk proposal: High intensity interval training does have a role in risk reduction or treatment of disease. J Physiol 2015;593: 5215–5217. https://doi.org/10.1113/JP271041
- Calbet JA, Holmberg HC, Rosdahl H, van Hall G, Jensen-Urstad M, Saltin B. Why do arms extract less oxygen than legs during exercise? Am J Physiol Regul Integr Comp Physiol 2005;289:R1448-R1458. https://doi.org/10.1152/ajpregu.00824.2004
- Sawka MN. Physiology of upper body exercise. Exerc Sport Sci Rev 1986;14:175-211.
- Sanchis-Moysi J, Idoate F, Olmedillas H, et al. The upper extremity of the professional tennis player: muscle volumes, fiber-type distribution and muscle strength. Scand J Med Sci Sports 2009;20:524–534. https://doi.org/10.1111/j.1600-0838.2009.00969.x
- Weber CL, Chia M, Inbar O. Gender differences in anaerobic power of the arms and legs--a scaling issue. Med Sci Sports Exerc 2006;38:129–137.
- Lovell D, Kerr A, Wiegand A, Solomon C, Harvey L, McLellan C. The contribution of energy systems during the upper body Wingate anaerobic test. Appl Physiol Nutr Metab 2003;38:216–219. https://doi.org/10.1139/apnm-2012-0101
- Brun JF, Khaled S, Raynaud E, Bouix D, Micallef JP, Orsetti A. The triphasic effects of exercise on blood rheology: which relevance to physiology and pathophysiology? Clin Hemorheol Microcirc 1998;19:89–104.
- Neuhaus D, Gaehtgens P. Haemorrheology and long term exercise. Sport Med 1994;18:10–21. https://doi.org/10.2165/00007256-199418010-00003
- Szygula Z. Erythrocytic system under the influence of physical exercise and training. Sport Med 1990;10:181–197. https://doi.org/10.2165/00007256-199010030-00004
- Yalcin O, Erman A, Muratli S, Bor-Kucukatay M, Baskurt OK. Time course of hemorheological alterations after heavy anaerobic exercise in untrained human subjects. J Appl Physiol 2003;94:997–1002. https://doi.org/10.1152/japplphysiol.00368.2002
- Muravyov AV, Draygin SV, Eremin NN, Muravyov AA. The microrheological behavior of young and old red blood cells in athletes. Clin Hemorheol Microcirc 2002;26:183–188.
- Baskurt OK, Meiselman HJ. Erythrocyte aggregation: basic aspects and clinical importance. Clin Hemorheol Microcirc 2013;53:23–37. https://doi.org/10.3233/CH-2012-1573.
- Franco BL, Signorelli GR, Trajano GS, Costa PB, de Oliveira CG. Acute effects of three different stretching protocols on the wingate test performance. J Sports Sci Med 2012;11:1–7.
- Inbar O, Bar-Or O, Skinner JS. The Wingate anaerobic test. John Wiley & Sons 1996.
- Hawley JA, Williams MM. Relationship between upper body anaerobic power and freestyle swimming performance. Int J Sports Med. 1991;12:1–5. https://doi.org/10.1055/s-2007-1024645
- Baskurt OK, Boynard M, Cokelet GC, et al. New guidelines for hemorheological laboratory techniques. Clin Hemorheol Microcirc. 2009;42:75–97. https://doi.org/10.3233/CH-2009-1202
- Hardeman MR, Goedhart PT, Shin S. Methods in hemorheology, Biomedical and Health Research-Commission of the European Communities then ios Press 2007;69: 242
- Erel O. A new automated colorimetric method for measuring total oxidant status, Clin Biochem 2005;38:1103-11. https://doi.org/10.1016/j.clinbiochem.2005.08.008
- Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004;37:277–285. https://doi.org/10.1016/j.clinbiochem.2003.11.015
- Kosecik M, Erel O, Sevinc E, Selek S. Increased oxidative stress in children exposed to passive smoking. Int J Cardiol 2005;100:61–64. https://doi.org/10.1016/j.ijcard.2004.05.069
- El-Sayed MS, Ali N, El-Sayed Ali Z. Haemorheology in exercise and training. Sport Med 2005;35:649–670. https://doi.org/10.2165/00007256-200535080-00001
- Yalcin O, Bor-Kucukatay M, Senturk UK, Baskurt OK. Effects of swimming exercise on red blood cell rheology in trained and untrained rats. J Appl Physiol 2000;88:2074–2080. https://doi.org/10.1152/jappl.2000.88.6.2074
- Bouix D, Peyreigne C, Raynaud E, Monnier JF, Micallef JP, Brun JF. Relationships among body composition, hemorheology and exercise performance in rugbymen. Clin Hemorheol Microcirc 1998;19:245–254.
- Baskurt OK, Meiselman HJ. Activated polymorphonuclear leukocytes affect red blood cell aggregability. J Leukoc Biol 1998;63:89–93. https://doi.org/10.1002/jlb.63.1.89 Varlet-Marie E, Gaudard A, Monnier JF,et al. Reduction of red blood cell disaggregability during submaximal exercise: relationship with fibrinogen levels. Clin Hemorheol Microcirc 2003;28:139–149. Rampling MW. Red cell aggregation and yield stress. Clin blood Rheol 1988;1:45–64. Senturk UK, Yalcin O, Gunduz F, Kuru O, Meiselman HJ, Baskurt OK. Effect of antioxidant vitamin treatment on the time course of hematological and hemorheological alterations after an exhausting exercise episode in human subjects. J Appl Physiol 2005;98:1272–1279. https://doi.org/10.1152/japplphysiol.00875.2004 Pepe H, Balci SS, Revan S, Akalin PP, Kurtoğlu F. Comparison of oxidative stress and antioxidant capacity before and after running exercises in both sexes. Gend Med 2009;6:587–595. https://doi.org/10.1016/j.genm.2009.10.001 Roque FR, Briones AM, Garcia-Redondo AB, et al. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension. Br J Pharmacol 2013;168:686–703. https://doi.org/10.1111/j.1476-5381.2012.02224.x. Connes P, Simmonds MJ, Brun JF, Baskurt OK. Exercise hemorheology: classical data, recent findings and unresolved issues. Clin Hemorheol Microcirc 2013;53:187–199. https://doi.org/10.3233/CH-2012-1643 Brun JF, Varlet-Marie E, Romain AJ, Guiraudou M, Raynaud de Mauverger E. Exercise hemorheology: Moving from old simplistic paradigms to a more complex picture. Clin Hemorheol Microcirc 2013;55:15–27. https://doi.org/10.3233/CH-131686. Lipowsky HH, Cram LE, Justice W, Eppihimer MJ. Effect of Erythrocyte Deformability on in Vivo Red Cell Transit Time and Hematocrit and Their Correlation with in Vitro Filterability. Microvasc Res 1993;46:43–64. https://doi.org/10.1006/mvre.1993.1034
- Driessen GK, Haest CW, Heidtmann H, Kamp D, Schmid-Schönbein H. Effect of reduced red cell "deformability" on flow velocity in capillaries of rat mesentery. Pflugers Arch 1980;388:75–78. https://doi.org/10.1007/BF00582631