Araştırma Makalesi
BibTex RIS Kaynak Göster

Klip-kompresyon ve ağırlık düşürme modelleriyle oluşturulmuş deneysel omurilik yaralanması modellerinde oksidan-antioksidan parametrelerin analizi

Yıl 2020, , 775 - 783, 18.09.2020
https://doi.org/10.31362/patd.747264

Öz

Amaç: Deneysel omurilik yaralanmalarında hasarın takibi ve hücrelerin hasara yanıtını değerlendirmek ana unsurlardan biridir. Bu çalışmada iki farklı deneysel omurilik travma modelinde serum ve dokuda oksidan-antioksidan maddelerin değişimi incelenmiştir.
Gereç ve yöntem: Çalışmada 3 grupta 6 adet Wistar rat kullanıldı. Kontrol grubuna (A grubu) sadece laminektomi yapıldı. Ağırlık grubuna (B grubu) laminektomi ve ağırlık düşürme modeli ile, klip-kompresyon grubuna (C grubu) laminektomi ve klip kompresyon tekniği ile spinal kord hasarı oluşturuldu. Fonksiyonel olarak 12. saat, 1., 3. 5. 7. Gün BBB skorları ile değerlendirildi. Biokimyasal olarak 12. saatde, 1., 5. ve 7. gün alınan kuyruk kanlarında oksidan-antioksidan maddeler incelendi. 7.gün sakrifiye edilen deneklerin omurilik dokularında Total antioksidan kapasite (TAS), Total oksidan kapasite (TOS) ve OSİ (oksidatif stres indeksi) bakıldı.
Bulgular A grubuna göre B ve C grubunda Disülfid(SS)/Total tiol(TT), SS/Native tiol(NT) ve NT/TT oranları anlamlı olarak farklı bulunmuştur. Katalaz için en erken anlamlı fark 5. gün ortaya çıkmıştır. İMA (iskemi modifiye albümin) erken evrede artsa da hasarın 3. gününden itibaren tekrar azalıp 7. gün normale yakın değerlere gelmiştir. C ile B grubu kıyaslandığında parametrelerin C grubunda daha anlamlı değişiklik gösterdiği görülmüştür.
Sonuç Travma modellerinde oksidatif-antioksidatif markerlar hasarın şiddetini göstermede ve takibinde kullanılabilir. Klip kompresyon yöntemi, serumda oksidatif stres parametrelerini ölçmek için daha başarılı bir yöntemdir.

Destekleyen Kurum

yok

Proje Numarası

yok

Kaynakça

  • 1. Kumar R, Lim J, Mekary RA, et al. Traumatic Spinal Injury: global epidemiology and worldwide volume. World Neurosurg 2018, 113:e345-e363, 2018;113:345-363. doi:10.1016/j.wneu.2018.02.033.
  • 2. Cheriyan T, Ryan DJ, Weinreb JH, et al. spinal cord injury models: a review. Spinal Cord 2014, 52:588-595, doi:10.1038/sc.2014.91.
  • 3. Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 2000, 17:1-17, doi:10.1089/neu.2000.17.1.
  • 4. Abdullahi D, Annuar AA, Mohamad M, Aziz I, Sanusi J. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models. Rev Neurosci 2017, 28:15-20, doi:10.1515/revneuro-2016-0050.
  • 5. Paterniti I, Esposito E, Cuzzocrea S. An In Vivo Compression Model of Spinal Cord Injury. Methods Mol Biol 2018, 1727:379-384, doi:10.1007/978-1-4939-7571-6_29.
  • 6. Aras M, Altas M, Motor S, et al. Protective effects of minocycline on experimental spinal cord injury in rats. Injury 2015, 46:1471-1474, doi:10.1016/j.injury.2015.05.018.
  • 7. Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 2016, 9:1125-1137, doi:10.1242/dmm.025833.
  • 8. Lin X, Zhu J, Ni H, et al. Treatment With 2-BFI Attenuated Spinal Cord Injury by Inhibiting Oxidative Stress and Neuronal Apoptosis via the Nrf2 Signaling Pathway. Front Cell Neurosci 2019, 13:567, doi:10.3389/fncel.2019.00567.
  • 9. Sharif-Alhoseini M, Khormali M, Rezaei M, et al. Animal models of spinal cord injury: a systematic review. Spinal Cord 2017, 55:714-721, doi:10.1038/sc.2016.187.
  • 10. Cho ES, Jang YJ, Hwang MK, Kang NJ, Lee KW, Lee HJ. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutat Res 2009, 661:18-24, doi:10.1016/j.mrfmmm.2008.10.021.
  • 11. Dumont RJ, Verma S, Okonkwo DO, et al. Acute spinal cord injury, part II: contemporary pharmacotherapy. Clin Neuropharmacol 2001, 24:265-279.
  • 12. Evsen MS, Ozler A, Gocmez C, et al. Effects of estrogen, estrogen/progesteron combination and genistein treatments on oxidant/antioxidant status in the brain of ovariectomized rats. Eur Rev Med Pharmacol Sci 2013, 17:1869-1873.
  • 13. Kermani HR, Nakhaee N, Fatahian R, Najar AG. Effect of Aspirin on Spinal Cord Injury: An Experimental Study. Iran J Med Sci 2016, 41:217-222.
  • 14. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005, 38:1103-1111, doi:10.1016/j.clinbiochem.2005.08.008.
  • 15. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004, 37:277-285, doi:10.1016/j.clinbiochem.2003.11.015.
  • 16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • 17. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 2014, 47:326-332, doi:10.1016/j.clinbiochem.2014.09.026.
  • 18. Bar-Or D, Winkler JV, Vanbenthuysen K, Harris L, Lau E, Hetzel FW. Reduced albumin-cobalt binding with transient myocardial ischemia after elective percutaneous transluminal coronary angioplasty: a preliminary comparison to creatine kinase-MB, myoglobin, and troponin I. Am Heart J 2001, 141:985-991, doi:10.1067/mhj.2001.114800.
  • 19. Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991, 196:143-151, doi:10.1016/0009-8981(91)90067-m.
  • 20. Devivo MJ. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 2012, 50:365-372, doi:10.1038/sc.2011.178.
  • 21. Klusman I, Schwab ME. Effects of pro-inflammatory cytokines in experimental spinal cord injury. Brain Res 1997, 762:173-184.
  • 22. Hall ED, Braughler JM. Free radicals in CNS injury. Res Publ Assoc Res Nerv Ment Dis 1993, 71:81-105.
  • 23. Singh E, Devasahayam G. Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection. Mol Biol Rep 2020, doi:10.1007/s11033-020-05354-1.
  • 24. Kuyumcu F, Aycan A. Evaluation of oxidative stress levels and antioxidant enzyme activities in burst fractures. Med Sci Monit 2018, 24:225-234, doi:10.12659/msm.908312.
  • 25. Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother 2017, 87:223-229, doi:10.1016/j.biopha.2016.12.105.
  • 26. Lee YS, Sindhu RK, Lin CY, Ehdaie A, Lin VW, Vaziri ND. Effects of nerve graft on nitric oxide synthase, NAD(P)H oxidase, and antioxidant enzymes in chronic spinal cord injury. Free Radic Biol Med 2004, 36:330-339, doi:10.1016/j.freeradbiomed.2003.11.006.
  • 27. Vaziri ND, Lee YS, Lin CY, Lin VW, Sindhu RK. NAD(P)H oxidase, superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury. Brain Res 2004, 995:76-83, doi:10.1016/j.brainres.2003.09.056.
  • 28. Oran I, Oran B. Ischemia-modified albumin as a marker of acute coronary syndrome: the case for revising the concept of "N-terminal modification" to "fatty acid occupation" of albumin. Dis Markers 2017, 2017:5692583, doi:10.1155/2017/5692583.
  • 29. Coverdale JPC, Katundu KGH, Sobczak AIS, Arya S, Blindauer CA, Stewart AJ. Ischemia-modified albumin: crosstalk between fatty acid and cobalt binding. Prostaglandins Leukot Essent Fatty Acids 2018, 135:147-157, doi:10.1016/j.plefa.2018.07.014.
  • 30. Radwan TAM, Fahmy RS, El Emady MFM, et al. Ischemia-modified albumin as a biomarker for prediction of poor outcome in patients with traumatic brain injury: an observational cohort study. J Neurosurg Anesthesiol 2019, doi:10.1097/ANA.0000000000000647.
  • 31. Gunduztepe Y, Bukan N, Zorlu E, et al. The evaluation of thiol-disulfite balance, ischemia albumin modification and seruloplazmine as a new oxidative stress in mild cognitive impairment and early stage alzheimer's disease patients. J Clin Neurosci 2020, doi:10.1016/j.jocn.2019.12.026.
  • 32. Giden R, Gokdemir MT, Erel O, Buyukaslan H, Karabag H. The relationship between serum thiol levels and thiol/disulfide homeostasis with head trauma in Children. Clin Lab 2018, 64:163-168, doi:10.7754/Clin.Lab.2017.170816.
  • 33. Erel O, Erdogan S. Thiol Disulfide Homeostasis: An integrated approach with biochemical and clinical aspects. Turk J Med Sci 2020, doi:10.3906/sag-2003-64.
  • 34. Liu J, Peng L, Li J. The Lipoxin A4 receptor agonist BML-111 alleviates inflammatory injury and oxidative stress in spinal cord injury. Med Sci Monit 2020, 26:e919883, doi:10.12659/MSM.919883.
  • 35. Yu L, Qian J. Dihydrotanshinone I Alleviates spinal cord Injury via suppressing inflammatory response, oxidative stress and apoptosis in rats. Med Sci Monit 2020, 26:e920738, doi:10.12659/MSM.920738.
  • 36. Karatas Y, Erdi MF, Kaya B, et al. Neuroprotective effects of tocilizumab on experimentally-induced spinal cord ischemia-reperfusion injury. World Neurosurg 2018, doi:10.1016/j.wneu.2018.12.069.
  • 37. Sayhan MB, Oguz S, Salt O, Can N, Ozgurtas T, Yalta TD. Sesamin ameliorates mucosal tissue injury of mesenteric ischemia and reperfusion in an experimental rat model. Arch Med Sci 2019, 15:1582-1588, doi:10.5114/aoms.2017.68535.

Analysis of oxidant-antioxidant parameters in experimental spinal cord injury models created with clip-compression and weight-drop models

Yıl 2020, , 775 - 783, 18.09.2020
https://doi.org/10.31362/patd.747264

Öz

Proje Numarası

yok

Kaynakça

  • 1. Kumar R, Lim J, Mekary RA, et al. Traumatic Spinal Injury: global epidemiology and worldwide volume. World Neurosurg 2018, 113:e345-e363, 2018;113:345-363. doi:10.1016/j.wneu.2018.02.033.
  • 2. Cheriyan T, Ryan DJ, Weinreb JH, et al. spinal cord injury models: a review. Spinal Cord 2014, 52:588-595, doi:10.1038/sc.2014.91.
  • 3. Metz GA, Curt A, van de Meent H, Klusman I, Schwab ME, Dietz V. Validation of the weight-drop contusion model in rats: a comparative study of human spinal cord injury. J Neurotrauma 2000, 17:1-17, doi:10.1089/neu.2000.17.1.
  • 4. Abdullahi D, Annuar AA, Mohamad M, Aziz I, Sanusi J. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models. Rev Neurosci 2017, 28:15-20, doi:10.1515/revneuro-2016-0050.
  • 5. Paterniti I, Esposito E, Cuzzocrea S. An In Vivo Compression Model of Spinal Cord Injury. Methods Mol Biol 2018, 1727:379-384, doi:10.1007/978-1-4939-7571-6_29.
  • 6. Aras M, Altas M, Motor S, et al. Protective effects of minocycline on experimental spinal cord injury in rats. Injury 2015, 46:1471-1474, doi:10.1016/j.injury.2015.05.018.
  • 7. Kjell J, Olson L. Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 2016, 9:1125-1137, doi:10.1242/dmm.025833.
  • 8. Lin X, Zhu J, Ni H, et al. Treatment With 2-BFI Attenuated Spinal Cord Injury by Inhibiting Oxidative Stress and Neuronal Apoptosis via the Nrf2 Signaling Pathway. Front Cell Neurosci 2019, 13:567, doi:10.3389/fncel.2019.00567.
  • 9. Sharif-Alhoseini M, Khormali M, Rezaei M, et al. Animal models of spinal cord injury: a systematic review. Spinal Cord 2017, 55:714-721, doi:10.1038/sc.2016.187.
  • 10. Cho ES, Jang YJ, Hwang MK, Kang NJ, Lee KW, Lee HJ. Attenuation of oxidative neuronal cell death by coffee phenolic phytochemicals. Mutat Res 2009, 661:18-24, doi:10.1016/j.mrfmmm.2008.10.021.
  • 11. Dumont RJ, Verma S, Okonkwo DO, et al. Acute spinal cord injury, part II: contemporary pharmacotherapy. Clin Neuropharmacol 2001, 24:265-279.
  • 12. Evsen MS, Ozler A, Gocmez C, et al. Effects of estrogen, estrogen/progesteron combination and genistein treatments on oxidant/antioxidant status in the brain of ovariectomized rats. Eur Rev Med Pharmacol Sci 2013, 17:1869-1873.
  • 13. Kermani HR, Nakhaee N, Fatahian R, Najar AG. Effect of Aspirin on Spinal Cord Injury: An Experimental Study. Iran J Med Sci 2016, 41:217-222.
  • 14. Erel O. A new automated colorimetric method for measuring total oxidant status. Clin Biochem 2005, 38:1103-1111, doi:10.1016/j.clinbiochem.2005.08.008.
  • 15. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 2004, 37:277-285, doi:10.1016/j.clinbiochem.2003.11.015.
  • 16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.
  • 17. Erel O, Neselioglu S. A novel and automated assay for thiol/disulphide homeostasis. Clin Biochem 2014, 47:326-332, doi:10.1016/j.clinbiochem.2014.09.026.
  • 18. Bar-Or D, Winkler JV, Vanbenthuysen K, Harris L, Lau E, Hetzel FW. Reduced albumin-cobalt binding with transient myocardial ischemia after elective percutaneous transluminal coronary angioplasty: a preliminary comparison to creatine kinase-MB, myoglobin, and troponin I. Am Heart J 2001, 141:985-991, doi:10.1067/mhj.2001.114800.
  • 19. Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991, 196:143-151, doi:10.1016/0009-8981(91)90067-m.
  • 20. Devivo MJ. Epidemiology of traumatic spinal cord injury: trends and future implications. Spinal Cord 2012, 50:365-372, doi:10.1038/sc.2011.178.
  • 21. Klusman I, Schwab ME. Effects of pro-inflammatory cytokines in experimental spinal cord injury. Brain Res 1997, 762:173-184.
  • 22. Hall ED, Braughler JM. Free radicals in CNS injury. Res Publ Assoc Res Nerv Ment Dis 1993, 71:81-105.
  • 23. Singh E, Devasahayam G. Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection. Mol Biol Rep 2020, doi:10.1007/s11033-020-05354-1.
  • 24. Kuyumcu F, Aycan A. Evaluation of oxidative stress levels and antioxidant enzyme activities in burst fractures. Med Sci Monit 2018, 24:225-234, doi:10.12659/msm.908312.
  • 25. Samarghandian S, Azimi-Nezhad M, Farkhondeh T, Samini F. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomed Pharmacother 2017, 87:223-229, doi:10.1016/j.biopha.2016.12.105.
  • 26. Lee YS, Sindhu RK, Lin CY, Ehdaie A, Lin VW, Vaziri ND. Effects of nerve graft on nitric oxide synthase, NAD(P)H oxidase, and antioxidant enzymes in chronic spinal cord injury. Free Radic Biol Med 2004, 36:330-339, doi:10.1016/j.freeradbiomed.2003.11.006.
  • 27. Vaziri ND, Lee YS, Lin CY, Lin VW, Sindhu RK. NAD(P)H oxidase, superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury. Brain Res 2004, 995:76-83, doi:10.1016/j.brainres.2003.09.056.
  • 28. Oran I, Oran B. Ischemia-modified albumin as a marker of acute coronary syndrome: the case for revising the concept of "N-terminal modification" to "fatty acid occupation" of albumin. Dis Markers 2017, 2017:5692583, doi:10.1155/2017/5692583.
  • 29. Coverdale JPC, Katundu KGH, Sobczak AIS, Arya S, Blindauer CA, Stewart AJ. Ischemia-modified albumin: crosstalk between fatty acid and cobalt binding. Prostaglandins Leukot Essent Fatty Acids 2018, 135:147-157, doi:10.1016/j.plefa.2018.07.014.
  • 30. Radwan TAM, Fahmy RS, El Emady MFM, et al. Ischemia-modified albumin as a biomarker for prediction of poor outcome in patients with traumatic brain injury: an observational cohort study. J Neurosurg Anesthesiol 2019, doi:10.1097/ANA.0000000000000647.
  • 31. Gunduztepe Y, Bukan N, Zorlu E, et al. The evaluation of thiol-disulfite balance, ischemia albumin modification and seruloplazmine as a new oxidative stress in mild cognitive impairment and early stage alzheimer's disease patients. J Clin Neurosci 2020, doi:10.1016/j.jocn.2019.12.026.
  • 32. Giden R, Gokdemir MT, Erel O, Buyukaslan H, Karabag H. The relationship between serum thiol levels and thiol/disulfide homeostasis with head trauma in Children. Clin Lab 2018, 64:163-168, doi:10.7754/Clin.Lab.2017.170816.
  • 33. Erel O, Erdogan S. Thiol Disulfide Homeostasis: An integrated approach with biochemical and clinical aspects. Turk J Med Sci 2020, doi:10.3906/sag-2003-64.
  • 34. Liu J, Peng L, Li J. The Lipoxin A4 receptor agonist BML-111 alleviates inflammatory injury and oxidative stress in spinal cord injury. Med Sci Monit 2020, 26:e919883, doi:10.12659/MSM.919883.
  • 35. Yu L, Qian J. Dihydrotanshinone I Alleviates spinal cord Injury via suppressing inflammatory response, oxidative stress and apoptosis in rats. Med Sci Monit 2020, 26:e920738, doi:10.12659/MSM.920738.
  • 36. Karatas Y, Erdi MF, Kaya B, et al. Neuroprotective effects of tocilizumab on experimentally-induced spinal cord ischemia-reperfusion injury. World Neurosurg 2018, doi:10.1016/j.wneu.2018.12.069.
  • 37. Sayhan MB, Oguz S, Salt O, Can N, Ozgurtas T, Yalta TD. Sesamin ameliorates mucosal tissue injury of mesenteric ischemia and reperfusion in an experimental rat model. Arch Med Sci 2019, 15:1582-1588, doi:10.5114/aoms.2017.68535.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Ercan Bal 0000-0003-0138-2090

Şahin Hanalioğlu 0000-0003-4988-4938

Aydın Sinan Apaydın 0000-0002-2916-9550

Ceylan Bal 0000-0002-1678-1281

Almila Şenat 0000-0002-5806-562X

Berrak Gümüşkaya Öcal 0000-0003-0599-8968

Burak Bahadır 0000-0003-2456-8170

Ömer Faruk Türkoğlu 0000-0001-9375-1169

Proje Numarası yok
Yayımlanma Tarihi 18 Eylül 2020
Gönderilme Tarihi 2 Haziran 2020
Kabul Tarihi 24 Ağustos 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

AMA Bal E, Hanalioğlu Ş, Apaydın AS, Bal C, Şenat A, Gümüşkaya Öcal B, Bahadır B, Türkoğlu ÖF. Klip-kompresyon ve ağırlık düşürme modelleriyle oluşturulmuş deneysel omurilik yaralanması modellerinde oksidan-antioksidan parametrelerin analizi. Pam Tıp Derg. Eylül 2020;13(3):775-783. doi:10.31362/patd.747264
Creative Commons Lisansı
Pamukkale Tıp Dergisi, Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır