Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Secondary School Students’ Success in Solving Pattern Problems in Terms of Various Variables

Yıl 2020, Cilt: 49, 582 - 599, 01.05.2020
https://doi.org/10.9779/pauefd.523388

Öz



The purpose of this study was to determine whether there is a significant relationship between the grade level, gender and mathematics achievement of secondary school students and their success in solving pattern problems. For this purpose, a descriptive study was conducted totally of 399 middle school students enrolled at a state college in the Nicosia district of the Turkish Republic of Northern Cyprus. The data was collected by Pattern Achievement Test and analyzed by multiple regression analysis. It was seen that class level, gender, and mathematics achievement, which are considered as independent variables, had a positive and moderate level impact on students’ success in solving pattern problems.




Kaynakça

  • Akkan, Y. (2013). Comparison of 6th-8th graders’ efficiencies, strategies and representations regarding generalization patterns. Bolema Boletim de Educação Matemática, 27 (47), 703-732.
  • Becker, J. R. ve Rivera, F. (2005). Generalization strategies of beginning high school algebra students. Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Melbourne.
  • Burns, M. (2000). About teaching mathematics. A-K 8 research (2nd ed.) Sausaluto, California. CA: Math Solutions Publication.
  • Dekker, T. ve Dolk, M. (2011). From arithmetic to algebra. Secondary Algebra Education, 69-87. Dobrynina, G. (2001). Reasoning Processes of Grade 4-6 Students Solving Two- and Three-Variable Problems (Unpublished Doctoral Dissertation), Boston University, Boston.
  • Doğan, N. ve Başokçu, T. (2010). İstatistik Tutum Ölçeği İçin Uygulanan Faktör Analizi ve Aşamalı Kümeleme Analizi Sonuçlarının Karşılaştırılması. Journal of Measurement and Evaluation in Education and Psychology, 1 (2), 65-71.
  • Dyndial, J. (2007). High school students’ use of patterns and generalizations. Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia, Melbourene. Edwards, T. (2000). Some “Big Ideas” of algebra in the middle grades. Mathematics Teaching in the Middle School, 26-31.
  • English, L. ve Warren, E. (1998). Introducing the variable through pattern exploration. Mathematics Teacher. 91 (2) 166-171.
  • Fouche, Katheryn K. (1997). Algebra for Everyone: Start Early. Mathematics Teaching in the Middle School. p. 226-29.
  • Hargreaves, M. Shorrocks-Taylor, D. ve Threlfall, J. (1998) Children's strategies with number patterns. Educational Studies. Vol. 24, 3.
  • Hargreaves, M., Shorrocks-Taylor, D. ve Threlfall, J. (1999). Children’s strategies with number patterns. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 67-83). London and New York: Cassell.
  • Heddens, J. W., & Speer, W. R. (2001). Today’s mathematics concepts and classroom methods. New York:John Wiley and Sons.
  • Gravetter, J. F. ve Forzano, L. B. (2012). Research methods for the behavioral sciences. USA: Linda Schreiber-Ganster.
  • Jurdak, M. ve EL Mouhayar, R. (2013). Trends in the development of student level of reasoning in pattern generalization tasks across grade-level. Educational Studies in Mathematics, 85(1), 75-92.
  • Karasar. N. (2015). Bilimsel Araştırma Yöntemi. 28. Basım. Ankara: Nobel Yayınevi.
  • Kılıç, Ç. (2017). Analyzing middle school students’ figural pattern generating strategies considering a quadratic number pattern. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17 (1), 250-267.
  • Kieran, C. (1988). The early learning of algebra. In C. Kieran ve S. Wagner (Eds.), Research issues in the learning and teaching of algebra. Reston, VA: National Council of Teachers of Mathematics.
  • Köse, N. ve Tanışlı, D. (2011). İlköğretim Matematik Ders Kitaplarında Eşit İşareti ve İlişkisel Düşünme. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 5 (2), 251-277.
  • Looney, C. L. (2004). A study of students’ understanding of patterns and functions in grades 3-5. (Unpublished Doctoral Dissertation), Boston University, Boston.
  • MacGregor, M. ve Stacey, K. (1993). Seeing a pattern and writing a rule. In I. Hirabayashi, N. Nohda, K. Shigematsu and F. Lin (Ed.), Proceeding of The 17th Conference for Psychology of Mathematics Education, 1, 181-188.
  • McMillan, J. H. (2004). Educational research. Boston: Pearson Education.
  • MacGregor, M. ve Stacey, K. (1995). The effect of different approaches to algebra on students’ perceptions of functional relationships. Mathematics Education Research Journal, 7, (1), 69-85.
  • Martinez, M. ve Brizuela, B. M. (2006). A third grader’s way of thinking about linear function tables. Journal of Mathematical Behavior. 25, 285-298.
  • Mor, Y., Noss, R., Hoyles, C., Kahn K. & Simpson G. (2006). Designing to see and share structure in number sequences. The International Journal for Technology in Mathematics Education, 13 (2), 65.
  • Moss, J. ve R. Beaty. (2006). Knowledge Building in Mathematics: Supporting collaborative learning in pattern problems. Computer-Supported Collaborative Learning, 1, 441- 465.
  • Mulligan, J. and Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21 (2), 33-49
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. reston, VA: NCTM
  • National Council of Teachers of Mathematics. (NCTM) (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • Olkun, S. ve Toluk-Uçar, Z. (2007). İlköğretimde Etkinlik Temelli Matematik Öğretimi. Ankara: Maya Akademi.
  • Olkun, S. ve Yeşildere, S. (2007). Sınıf Öğretmeni Adayları İçin Temel Matematik 1. Ankara: Maya Akademi.
  • Orton, A. (1999). Preface. In A. Orton (Ed.), Pattern in the Teaching and Learning of Mathematics. London and New York: Cassell.
  • Orton, A. ve Orton, J. (1994). Student's perception and use of pattern and generalization, Proceedings of the Eighteenth. Conference for Psychology of Mathematics Education, s. 407-414. Orton, A. and Orton, J. (1999). Pattern and the approach to algebra. In A. Orton (Ed.), Pattern in the Teaching and Learning of Mathematics. s. 104-120. London: Cassel.
  • Orton, J., Orton, A. ve Roper, T. (1999). Pictorial and Practical Context and the Presentation of Pattern. In A. Orton (Ed.), Pattern in the Teaching and Learning of Mathematics. s. 121-136. London: Cassel.
  • Özdemir, E., Dikici, R. ve Kültür, N. (2014). Öğrencilerin Örüntüleri Genelleme Süreçleri: 7. Sınıf Örneği. K. Ü. Kastamonu Eğitim Dergisi, 23(2), 523-548.
  • Papic, M. (2007). Promoting repeating patterns with young children. Australian Primary Mathematics Classroom, 12(3), 8-13.
  • Palabıyık, U., Akkuş İspir, O. (2011). Örüntü temelli cebir öğretiminin öğrencilerin cebirsel düşünme becerileri ve matematiğe karşı tutumlarına etkisi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 30, 111-123.
  • Pilten, P ve Yener, D. (2013). İlköğretim 1. Kademe Öğrencilerinin Matematiksel Örüntüleri Analiz Etme ve Tahminde Bulunma Becerilerinin Değerlendirilmesi. Sakarya Üniversitesi Eğitim Fakültesi Dergisi, 18, 62-78.
  • Schliemann, A.D., Carraher, D. W. ve Brizuella, B. (2001). When tables become function tables. Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education. Utrecht, The Netherlands
  • Schliemann, A.D., Goodrow, A. ve Lara-Roth, S. (2001). Functions and graphs in third grade. NCTM 2001 Research Precession. Orlande. FL.
  • Schliemann, A.D., Carraher, D. W., Brizuella, B., Earnest, D. Goodrow, A., Lara-Roth, S. ve Peled, I. (2003). Algebra in elementary school. Proceedings of the 27th International Conference for the Psychology of Mathematics Education. Honolulu, HI
  • Steen, L. A. (Ed.) (1990). On the shoulders of giants: New approaches to numeracy. Washington DC: National Academy Press.
  • Tall, D. (1992). The transition from arithmetic to algebra: Number patterns or proceptual programming? New Directions in Algebra Education. Brisbane: Queensland.
  • Tanışlı, D. (2008). İlköğretim beşinci sınıf öğrencilerinin örüntülere ilişkin anlama ve kavrama biçimlerinin belirlenmesi. (Yayınlanmamış Doktora Tezi), Eskişehir, Türkiye
  • Tanışlı, D., Yavuzsoy, N., & Camcı, F. (2017). Matematik öğretmen adaylarının örüntüler bağlamında genelleme ve doğrulama bilgileri. Eğitimde Nitel Araştırmalar Dergisi, 5(3), 195-222.
  • Tanışlı, D. ve Olkun, S. (2009). Basitten Karmaşığa Örüntüler. Ankara: Maya Akademi.
  • Tsankova, I. (2003). Algebraic reasoning of first through third grade students solving systems of two linear equations with two variables. (Unpublished Doctoral Dissertation), Boston University, Boston.
  • Threlfall, J. (1999). Repeating patterns in the early primary years. In A. Orton (Ed.), Patterns in the teaching and learning of mathematics. London: Cassell.
  • Uygur-Kabael, T., ve Tanışlı, D. (2010). Cebirsel düşünme sürecinde örüntüden fonksiyona öğretim. İlköğretim Online, 9(1), 213–228.
  • Warren, E. (2004). Generalizing arithmetic: supporting the process in the early years. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, Vol 4., s.417–424
  • Warren, E. (2005). Patterns supporting the development of early algebraic thinking. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building connections: Research, theory and practice. Proceedings of the 28th annual conference of the Mathematics Education Research Group of Australasia, Melbourne, s. 759-766). Sydney: MERGA.
  • Warren, E. ve Cooper, T. (2006). Using repeating patterns to explore functional thinking. Australian Primary Mathematics Classroom, 11(1), 9-14.
  • Warren, E. (2009). Early childhood teachers’ professional learning in early algebraic thinking: a model that supports new knowledge and pedagogy. Mathematics Education Research Journal, Vol. 9, 30-45.
  • Willoughby, S.S. (1997). Functions from kindergarten through sixth grade. Teaching Children Mathematics, 3, 314-318.
  • Yackel, E. (1997). Explanation as an interactive accomplishment: A case study of one second-grade mathematics classroom. Paper presented at the annual meeting of the American Educational Research Association, Chicago.
  • Yaman, H. (2010). İlköğretim öğrencilerinin matematiksel örüntülerdeki ilişkileri algılayışları üzerine bir inceleme (Yayınlanmamış Doktora Tezi), Ankara, Türkiye.
  • Yeşildere, S. ve Akkoç, H. (2010). Matematik öğretmen adaylarının sayı örüntülerine ilişkin pedagojik alan bilgilerinin konuya özel stratejiler bağlamında incelenmesi. On Dokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 29(1), 125-149.

Ortaokul Öğrencilerinin Örüntü Problemlerini Çözme Başarılarının Çeşitli Değişkenler Açısından İncelenmesi

Yıl 2020, Cilt: 49, 582 - 599, 01.05.2020
https://doi.org/10.9779/pauefd.523388

Öz





Bu araştırmanın amacı ortaokul öğrencilerinin sınıf düzeyi,
cinsiyet ve matematik başarıları ile örüntü problemlerini çözme başarıları
arasında anlamlı bir ilişki olup olmadığını belirlemektir. Araştırmada tarama
modeli kullanılmıştır. Araştırmanın örneklemini, Kuzey Kıbrıs Türk Cumhuriyeti
Lefkoşa ilçesine bağlı bir devlet kolejinde öğrenim gören 399 öğrenci
oluşturmaktadır. Araştırmada veri toplama aracı olarak Örüntü Başarı Testi
kullanılmış ve veriler çoklu regresyon yardımıyla analiz edilmiştir Araştırma
sonuçları ortaokul öğrencilerinin iyi düzeyde örüntü problemlerini çözme başarısına
sahip olduklarını göstermektedir. Bağımsız değişkenler olarak ele alınan sınıf
düzeyi, cinsiyet ve matematik başarısının, öğrencilerin örüntü problemlerini
çözme başarısını pozitif ve orta düzeyde yordadığı görülmüştür.






Kaynakça

  • Akkan, Y. (2013). Comparison of 6th-8th graders’ efficiencies, strategies and representations regarding generalization patterns. Bolema Boletim de Educação Matemática, 27 (47), 703-732.
  • Becker, J. R. ve Rivera, F. (2005). Generalization strategies of beginning high school algebra students. Proceedings of the 29th Conference of the International Group for the Psychology of Mathematics Education, Melbourne.
  • Burns, M. (2000). About teaching mathematics. A-K 8 research (2nd ed.) Sausaluto, California. CA: Math Solutions Publication.
  • Dekker, T. ve Dolk, M. (2011). From arithmetic to algebra. Secondary Algebra Education, 69-87. Dobrynina, G. (2001). Reasoning Processes of Grade 4-6 Students Solving Two- and Three-Variable Problems (Unpublished Doctoral Dissertation), Boston University, Boston.
  • Doğan, N. ve Başokçu, T. (2010). İstatistik Tutum Ölçeği İçin Uygulanan Faktör Analizi ve Aşamalı Kümeleme Analizi Sonuçlarının Karşılaştırılması. Journal of Measurement and Evaluation in Education and Psychology, 1 (2), 65-71.
  • Dyndial, J. (2007). High school students’ use of patterns and generalizations. Proceedings of the 30th annual conference of the Mathematics Education Research Group of Australasia, Melbourene. Edwards, T. (2000). Some “Big Ideas” of algebra in the middle grades. Mathematics Teaching in the Middle School, 26-31.
  • English, L. ve Warren, E. (1998). Introducing the variable through pattern exploration. Mathematics Teacher. 91 (2) 166-171.
  • Fouche, Katheryn K. (1997). Algebra for Everyone: Start Early. Mathematics Teaching in the Middle School. p. 226-29.
  • Hargreaves, M. Shorrocks-Taylor, D. ve Threlfall, J. (1998) Children's strategies with number patterns. Educational Studies. Vol. 24, 3.
  • Hargreaves, M., Shorrocks-Taylor, D. ve Threlfall, J. (1999). Children’s strategies with number patterns. In A. Orton (Ed.), Pattern in the teaching and learning of mathematics (pp. 67-83). London and New York: Cassell.
  • Heddens, J. W., & Speer, W. R. (2001). Today’s mathematics concepts and classroom methods. New York:John Wiley and Sons.
  • Gravetter, J. F. ve Forzano, L. B. (2012). Research methods for the behavioral sciences. USA: Linda Schreiber-Ganster.
  • Jurdak, M. ve EL Mouhayar, R. (2013). Trends in the development of student level of reasoning in pattern generalization tasks across grade-level. Educational Studies in Mathematics, 85(1), 75-92.
  • Karasar. N. (2015). Bilimsel Araştırma Yöntemi. 28. Basım. Ankara: Nobel Yayınevi.
  • Kılıç, Ç. (2017). Analyzing middle school students’ figural pattern generating strategies considering a quadratic number pattern. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 17 (1), 250-267.
  • Kieran, C. (1988). The early learning of algebra. In C. Kieran ve S. Wagner (Eds.), Research issues in the learning and teaching of algebra. Reston, VA: National Council of Teachers of Mathematics.
  • Köse, N. ve Tanışlı, D. (2011). İlköğretim Matematik Ders Kitaplarında Eşit İşareti ve İlişkisel Düşünme. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 5 (2), 251-277.
  • Looney, C. L. (2004). A study of students’ understanding of patterns and functions in grades 3-5. (Unpublished Doctoral Dissertation), Boston University, Boston.
  • MacGregor, M. ve Stacey, K. (1993). Seeing a pattern and writing a rule. In I. Hirabayashi, N. Nohda, K. Shigematsu and F. Lin (Ed.), Proceeding of The 17th Conference for Psychology of Mathematics Education, 1, 181-188.
  • McMillan, J. H. (2004). Educational research. Boston: Pearson Education.
  • MacGregor, M. ve Stacey, K. (1995). The effect of different approaches to algebra on students’ perceptions of functional relationships. Mathematics Education Research Journal, 7, (1), 69-85.
  • Martinez, M. ve Brizuela, B. M. (2006). A third grader’s way of thinking about linear function tables. Journal of Mathematical Behavior. 25, 285-298.
  • Mor, Y., Noss, R., Hoyles, C., Kahn K. & Simpson G. (2006). Designing to see and share structure in number sequences. The International Journal for Technology in Mathematics Education, 13 (2), 65.
  • Moss, J. ve R. Beaty. (2006). Knowledge Building in Mathematics: Supporting collaborative learning in pattern problems. Computer-Supported Collaborative Learning, 1, 441- 465.
  • Mulligan, J. and Mitchelmore, M. (2009). Awareness of pattern and structure in early mathematical development. Mathematics Education Research Journal, 21 (2), 33-49
  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. reston, VA: NCTM
  • National Council of Teachers of Mathematics. (NCTM) (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • Olkun, S. ve Toluk-Uçar, Z. (2007). İlköğretimde Etkinlik Temelli Matematik Öğretimi. Ankara: Maya Akademi.
  • Olkun, S. ve Yeşildere, S. (2007). Sınıf Öğretmeni Adayları İçin Temel Matematik 1. Ankara: Maya Akademi.
  • Orton, A. (1999). Preface. In A. Orton (Ed.), Pattern in the Teaching and Learning of Mathematics. London and New York: Cassell.
  • Orton, A. ve Orton, J. (1994). Student's perception and use of pattern and generalization, Proceedings of the Eighteenth. Conference for Psychology of Mathematics Education, s. 407-414. Orton, A. and Orton, J. (1999). Pattern and the approach to algebra. In A. Orton (Ed.), Pattern in the Teaching and Learning of Mathematics. s. 104-120. London: Cassel.
  • Orton, J., Orton, A. ve Roper, T. (1999). Pictorial and Practical Context and the Presentation of Pattern. In A. Orton (Ed.), Pattern in the Teaching and Learning of Mathematics. s. 121-136. London: Cassel.
  • Özdemir, E., Dikici, R. ve Kültür, N. (2014). Öğrencilerin Örüntüleri Genelleme Süreçleri: 7. Sınıf Örneği. K. Ü. Kastamonu Eğitim Dergisi, 23(2), 523-548.
  • Papic, M. (2007). Promoting repeating patterns with young children. Australian Primary Mathematics Classroom, 12(3), 8-13.
  • Palabıyık, U., Akkuş İspir, O. (2011). Örüntü temelli cebir öğretiminin öğrencilerin cebirsel düşünme becerileri ve matematiğe karşı tutumlarına etkisi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 30, 111-123.
  • Pilten, P ve Yener, D. (2013). İlköğretim 1. Kademe Öğrencilerinin Matematiksel Örüntüleri Analiz Etme ve Tahminde Bulunma Becerilerinin Değerlendirilmesi. Sakarya Üniversitesi Eğitim Fakültesi Dergisi, 18, 62-78.
  • Schliemann, A.D., Carraher, D. W. ve Brizuella, B. (2001). When tables become function tables. Proceedings of the 25th Conference of the International Group for the Psychology of Mathematics Education. Utrecht, The Netherlands
  • Schliemann, A.D., Goodrow, A. ve Lara-Roth, S. (2001). Functions and graphs in third grade. NCTM 2001 Research Precession. Orlande. FL.
  • Schliemann, A.D., Carraher, D. W., Brizuella, B., Earnest, D. Goodrow, A., Lara-Roth, S. ve Peled, I. (2003). Algebra in elementary school. Proceedings of the 27th International Conference for the Psychology of Mathematics Education. Honolulu, HI
  • Steen, L. A. (Ed.) (1990). On the shoulders of giants: New approaches to numeracy. Washington DC: National Academy Press.
  • Tall, D. (1992). The transition from arithmetic to algebra: Number patterns or proceptual programming? New Directions in Algebra Education. Brisbane: Queensland.
  • Tanışlı, D. (2008). İlköğretim beşinci sınıf öğrencilerinin örüntülere ilişkin anlama ve kavrama biçimlerinin belirlenmesi. (Yayınlanmamış Doktora Tezi), Eskişehir, Türkiye
  • Tanışlı, D., Yavuzsoy, N., & Camcı, F. (2017). Matematik öğretmen adaylarının örüntüler bağlamında genelleme ve doğrulama bilgileri. Eğitimde Nitel Araştırmalar Dergisi, 5(3), 195-222.
  • Tanışlı, D. ve Olkun, S. (2009). Basitten Karmaşığa Örüntüler. Ankara: Maya Akademi.
  • Tsankova, I. (2003). Algebraic reasoning of first through third grade students solving systems of two linear equations with two variables. (Unpublished Doctoral Dissertation), Boston University, Boston.
  • Threlfall, J. (1999). Repeating patterns in the early primary years. In A. Orton (Ed.), Patterns in the teaching and learning of mathematics. London: Cassell.
  • Uygur-Kabael, T., ve Tanışlı, D. (2010). Cebirsel düşünme sürecinde örüntüden fonksiyona öğretim. İlköğretim Online, 9(1), 213–228.
  • Warren, E. (2004). Generalizing arithmetic: supporting the process in the early years. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, Vol 4., s.417–424
  • Warren, E. (2005). Patterns supporting the development of early algebraic thinking. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building connections: Research, theory and practice. Proceedings of the 28th annual conference of the Mathematics Education Research Group of Australasia, Melbourne, s. 759-766). Sydney: MERGA.
  • Warren, E. ve Cooper, T. (2006). Using repeating patterns to explore functional thinking. Australian Primary Mathematics Classroom, 11(1), 9-14.
  • Warren, E. (2009). Early childhood teachers’ professional learning in early algebraic thinking: a model that supports new knowledge and pedagogy. Mathematics Education Research Journal, Vol. 9, 30-45.
  • Willoughby, S.S. (1997). Functions from kindergarten through sixth grade. Teaching Children Mathematics, 3, 314-318.
  • Yackel, E. (1997). Explanation as an interactive accomplishment: A case study of one second-grade mathematics classroom. Paper presented at the annual meeting of the American Educational Research Association, Chicago.
  • Yaman, H. (2010). İlköğretim öğrencilerinin matematiksel örüntülerdeki ilişkileri algılayışları üzerine bir inceleme (Yayınlanmamış Doktora Tezi), Ankara, Türkiye.
  • Yeşildere, S. ve Akkoç, H. (2010). Matematik öğretmen adaylarının sayı örüntülerine ilişkin pedagojik alan bilgilerinin konuya özel stratejiler bağlamında incelenmesi. On Dokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 29(1), 125-149.
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Aygil Takır 0000-0003-3042-7585

Ayşen Özerem Bu kişi benim 0000-0001-6779-2960

Yayımlanma Tarihi 1 Mayıs 2020
Gönderilme Tarihi 6 Şubat 2019
Kabul Tarihi 7 Ocak 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 49

Kaynak Göster

APA Takır, A., & Özerem, A. (2020). Ortaokul Öğrencilerinin Örüntü Problemlerini Çözme Başarılarının Çeşitli Değişkenler Açısından İncelenmesi. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 49, 582-599. https://doi.org/10.9779/pauefd.523388