In a generalized topological space Tg = (Ω, Tg ) (Tg -space), various ordinary topological operators (Tg -operators), namely, int_g, cl_g, ext_g, fr_g, der_g,
cod_g : P (Ω) −→ P (Ω) (T_g-interior, T_g-closure, T_g-exterior, T_g-frontier, T_g-derived, T_g-coderived operators), are defined in terms of ordinary sets (T_g-sets). Accordingly, generalized T_g-operators (g-T_g-operators), namely, g-Int_g, g-Cl_g, g-Ext_g, g-Fr_g, g-Der_g, g-Cod_g : P (Ω) −→ P (Ω) (g-T_g-interior,
g-T_g-closure, g-T_g-exterior, g-T_g-frontier, g-T_g-derived, g-T_g-coderived operators) may be defined in terms of generalized T_g-sets (g-T_g-sets), thereby making g-T_g-operators theory in T_g-spaces an interesting subject of inquiry. In this paper, we present the definitions and the essential properties of the
g-T_g-interior and g-T_g-closure operators g-Int_g , g-Cl_g : P (Ω) −→ P (Ω), respectively, in terms of a new class of g-T_g-sets which we studied earlier. The outstanding results to which the study has led to are: Firstly, (g-Int_g, g-Cl_g) : P (Ω) × P (Ω) −→ P (Ω) × P (Ω) is (Ω, ∅)-grounded, (expansive, non-expansive),
(idempotent, idempotent) and (∩, ∪)-additive. Secondly, g-Int_g : P (Ω) −→ P (Ω) is finer (or, larger, stronger than int_g : P (Ω) −→ P (Ω) and g-Cl_g : P (Ω) −→ P (Ω) is coarser (or, smaller, weaker) than cl_g : P (Ω) −→ P (Ω). The elements supporting these facts are reported therein as sources of inspiration for more generalized
operations.
Generalized topological space generalized sets generalized interior operator generalized interior operator generalized closure operator
Birincil Dil | İngilizce |
---|---|
Konular | Yazılım Mühendisliği (Diğer) |
Bölüm | Articles |
Yazarlar | |
Erken Görünüm Tarihi | 17 Temmuz 2023 |
Yayımlanma Tarihi | 18 Temmuz 2023 |
Kabul Tarihi | 2 Mayıs 2023 |
Yayımlandığı Sayı | Yıl 2023 Cilt: 5 Sayı: 1 |