Araştırma Makalesi
BibTex RIS Kaynak Göster

A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution

Yıl 2019, , 75 - 79, 01.03.2019
https://doi.org/10.2339/politeknik.374830

Öz

A comprehensive study was presented on swarm
algorithms used in the inverse kinematic solution which is the basis of robot
control in this paper. Because it is a complex and difficult problem group, the
inverse kinematic solution is an important problem especially in robot arms
with a lot of joints. So, swarm optimization techniques which were inspired by
the animals in the nature, are often used by researchers, because these
techniques find the best solution in a particular solution space. Artificial
bee colony, firefly algorithm and particle swarm algorithm are the swarm
techniques mentioned in this study. Since, these algorithms are frequently used
in inverse kinematic solution in the literature.

Kaynakça

  • [1] Kennedy J. and Eberhart R.C., “Particle Swarm Optimization”, IEEE International Conference on Neural Networks, 1942-1948, (1995).
  • [2] Karaboğa D., Gorkemli B., Ozturk C. and Karaboga N, “A comprehensive survey: artificial bee colony (ABC) algorithm and applications”, Artif Intell Rev, 42: 21-57, (2014).
  • [3] Yang X.S., “Nature-Inspired Metaheuristic Algorithms, Firefly Algorithm”, Luniver Press Publishing, (2010).
  • [4] Albinati J., Oliveira S.E.L., Otero F.E.B. and Pappa G.L., “An ant colony-based semi-supervised approach for learning classification rules”, Swarm Intelligence, 9:315-341, (2015).
  • [5] Blum C. and Li X., “Swarm Intelligence in Optimization, Swarm Intelligence”, Springer Verlag Publishing, (2008). [6] Gao W., Liu S. and Huang L., “A global best artificial bee colony algorithm for global optimization”, Computational and Applied Mathematics, Vol.236, 2012, pp. 2741-2753.
  • [7] Yang X.S. and He X., “Firefly Algorithm: Recent Advances and Application”, Swarm Intelligence, 1:36-50, (2013).
  • [8] Dereli S. and Köker R, “In a research on how to use inverse kinematics solution of actual intelligent optimization method”, International Symposium on Innovative Technologies in Engineering and Science (ISITES 2016), Alanya, (2016).
  • [9] Wolf B., “Inspiration by Swarm, Swarm Intelligence Based Optimization”, Siarry P, Idoumghar L, Lepagnot J., Springer Publisher, (2016).
  • [10] Bogue R., “Swarm Intelligence and Robotics”, Industrial Robot: An International Journal, 35-488-495, (2008).
  • [11] Jevtic A. and Andına D., “Swarm Intelligence and Its Applications in Swarm Robotics”, Sixth International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, 2007.
  • [12] Küçük S. and Bingül Z., “Robot Kinematics: Forward and Inverse Kinematics, Industrial Robotics: Theory, Modelling and Control”, Pro Literatur Verlag, (2006).
  • [13] Çavdar T., Mohammed M. and Milani R.A., “A New Heuristic Approach for Inverse Kinematics of Robot Arms”, Advanced Science Letters, 19:329-333, (2013).
  • [14] Pham D.T., Castellani M. and Fahmy A.A., “Learning the Inverse Kinematics of a Robot Manipulator using the Bees Algorithm”, IEEE International Conference on Industrial Informatics, 493-498, (2008).
  • [15] Rokbani N., Casals A. and Alimi A.M., “IK-FA, a New Heuristic Inverse Kinematics Solver Using Firefly Algorithm”, Computational Intelligence Applications in Modeling and Control, 575: 369-395, (2015).
  • [16] Durmuş B, Timurtaş H., and Gün A., “An Inverse Kinematics Solution using Particle Swarm Optimization”, International Advanced Technologies Symposium, 4: 193-197, (2011).
  • [17] Ayyıldız M. and Çetinkaya K., “Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator”, Neural Computing and Applications, 27: 835-836, (2016).
  • [18] Huang H.C., Chen C.P. and Wang P.R., “Particle Swarm Optimization for Solving the Inverse Kinematics of 7-DOF Robotic Manipulators”, IEEE International Conference on Systems, Man, and Cybernetics, 2012.
  • [19] Dereli S. and Köker R., “Design and Analysis of Multi-Layer Artificial Neural Network Used for Training in Inverse Kinematic Solution of 7-DOF Serial Robot”, Gaziosmanpasa Journal of Scientific Research, 6: 60-71, (2017).
  • [20] Corke P., “A Simple and Systematic Approach to Assigning Denavit–Hartenberg Parameters”, IEEE Transactions on Robotics, 23: 590-594, (2007).
  • [21] Yang G., Mustafa S.K., Yeo S.H., Lin W. and Lim W.B., “Kinematic design of an anthropomimetic 7-DOF cable-driven robotic arm”, Frontiers of Mechanical Engineering, 6: 45-60, (2011).
  • [22] Rokbani N. and Alimi A.M., “Inverse Kinematics Using Particle Swarm Optimization, a Statistical Analysis”, International Conference On Design And Manufacturing, 1602-1611, (2013).
  • [23] Sun J., Fang W., Palade V., Wu X. and Xu W., “Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point”, Applied Mathematics and Computation, 218: 3763-3775, (2011).
  • [24] Karaboğa D., “An idea based on honey bee swarm for numerical optimization”, Erciyes University, Technicial Report, 2005.
  • [25] Akay B. and Karaboğa D., “A Modified Artificial Bee Colony algorithm for real-parameter optimization”, Information Science, 192: 120-142, (2012).
  • [26] Wang H., Cui Z., Sun H., Rahnamayan S. and Yang X.S., “Randomly attracted firefly algorithm with neighborhood search and dynamic parameter adjustment mechanism”, Soft Computing, 20: 1-15, (2016).
  • [27] Yang X.S., “Firefly Algorithm. Nature-Inspired Metaheuristic Algorithm”, Luniver Press Publishing, 79-90, (2008).

A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution

Yıl 2019, , 75 - 79, 01.03.2019
https://doi.org/10.2339/politeknik.374830

Öz

Bu çalışmada, robot kontrolünün
temelinde bulunan ters kinematik çözümün bulunması için kullanılan sürü
algoritmalarının kapsamlı bir araştırması sunulmuştur. Ters kinematik çözüm karmaşık
ve zor problem grupları arasında olduğundan önemli bir problemdir. Özellikle bu
durum robot kolunun çok fazla sayıda eklemi bulunduğunda çok daha
zorlaşmaktadır. Bu nedenle doğadaki hayvanların davranışlarından esinlenilen
sürü optimizasyonu teknikleri araştırmacılar tarafından sık sık
kullanılmaktadır. Çünkü bu teknikler parçacık çözüm uzayındaki en iyi değeri
elde etmektedirler. Yapay arı kolonisi, ateş böceği algoritması ve parçacık
sürü algoritması bu çalışmada bahsi geçen tekniklerdir ve literatürde sıklıkla
tercih edilmişlerdir.   

Kaynakça

  • [1] Kennedy J. and Eberhart R.C., “Particle Swarm Optimization”, IEEE International Conference on Neural Networks, 1942-1948, (1995).
  • [2] Karaboğa D., Gorkemli B., Ozturk C. and Karaboga N, “A comprehensive survey: artificial bee colony (ABC) algorithm and applications”, Artif Intell Rev, 42: 21-57, (2014).
  • [3] Yang X.S., “Nature-Inspired Metaheuristic Algorithms, Firefly Algorithm”, Luniver Press Publishing, (2010).
  • [4] Albinati J., Oliveira S.E.L., Otero F.E.B. and Pappa G.L., “An ant colony-based semi-supervised approach for learning classification rules”, Swarm Intelligence, 9:315-341, (2015).
  • [5] Blum C. and Li X., “Swarm Intelligence in Optimization, Swarm Intelligence”, Springer Verlag Publishing, (2008). [6] Gao W., Liu S. and Huang L., “A global best artificial bee colony algorithm for global optimization”, Computational and Applied Mathematics, Vol.236, 2012, pp. 2741-2753.
  • [7] Yang X.S. and He X., “Firefly Algorithm: Recent Advances and Application”, Swarm Intelligence, 1:36-50, (2013).
  • [8] Dereli S. and Köker R, “In a research on how to use inverse kinematics solution of actual intelligent optimization method”, International Symposium on Innovative Technologies in Engineering and Science (ISITES 2016), Alanya, (2016).
  • [9] Wolf B., “Inspiration by Swarm, Swarm Intelligence Based Optimization”, Siarry P, Idoumghar L, Lepagnot J., Springer Publisher, (2016).
  • [10] Bogue R., “Swarm Intelligence and Robotics”, Industrial Robot: An International Journal, 35-488-495, (2008).
  • [11] Jevtic A. and Andına D., “Swarm Intelligence and Its Applications in Swarm Robotics”, Sixth International Conference on Computational Intelligence, Man-Machine Systems and Cybernetics, 2007.
  • [12] Küçük S. and Bingül Z., “Robot Kinematics: Forward and Inverse Kinematics, Industrial Robotics: Theory, Modelling and Control”, Pro Literatur Verlag, (2006).
  • [13] Çavdar T., Mohammed M. and Milani R.A., “A New Heuristic Approach for Inverse Kinematics of Robot Arms”, Advanced Science Letters, 19:329-333, (2013).
  • [14] Pham D.T., Castellani M. and Fahmy A.A., “Learning the Inverse Kinematics of a Robot Manipulator using the Bees Algorithm”, IEEE International Conference on Industrial Informatics, 493-498, (2008).
  • [15] Rokbani N., Casals A. and Alimi A.M., “IK-FA, a New Heuristic Inverse Kinematics Solver Using Firefly Algorithm”, Computational Intelligence Applications in Modeling and Control, 575: 369-395, (2015).
  • [16] Durmuş B, Timurtaş H., and Gün A., “An Inverse Kinematics Solution using Particle Swarm Optimization”, International Advanced Technologies Symposium, 4: 193-197, (2011).
  • [17] Ayyıldız M. and Çetinkaya K., “Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator”, Neural Computing and Applications, 27: 835-836, (2016).
  • [18] Huang H.C., Chen C.P. and Wang P.R., “Particle Swarm Optimization for Solving the Inverse Kinematics of 7-DOF Robotic Manipulators”, IEEE International Conference on Systems, Man, and Cybernetics, 2012.
  • [19] Dereli S. and Köker R., “Design and Analysis of Multi-Layer Artificial Neural Network Used for Training in Inverse Kinematic Solution of 7-DOF Serial Robot”, Gaziosmanpasa Journal of Scientific Research, 6: 60-71, (2017).
  • [20] Corke P., “A Simple and Systematic Approach to Assigning Denavit–Hartenberg Parameters”, IEEE Transactions on Robotics, 23: 590-594, (2007).
  • [21] Yang G., Mustafa S.K., Yeo S.H., Lin W. and Lim W.B., “Kinematic design of an anthropomimetic 7-DOF cable-driven robotic arm”, Frontiers of Mechanical Engineering, 6: 45-60, (2011).
  • [22] Rokbani N. and Alimi A.M., “Inverse Kinematics Using Particle Swarm Optimization, a Statistical Analysis”, International Conference On Design And Manufacturing, 1602-1611, (2013).
  • [23] Sun J., Fang W., Palade V., Wu X. and Xu W., “Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point”, Applied Mathematics and Computation, 218: 3763-3775, (2011).
  • [24] Karaboğa D., “An idea based on honey bee swarm for numerical optimization”, Erciyes University, Technicial Report, 2005.
  • [25] Akay B. and Karaboğa D., “A Modified Artificial Bee Colony algorithm for real-parameter optimization”, Information Science, 192: 120-142, (2012).
  • [26] Wang H., Cui Z., Sun H., Rahnamayan S. and Yang X.S., “Randomly attracted firefly algorithm with neighborhood search and dynamic parameter adjustment mechanism”, Soft Computing, 20: 1-15, (2016).
  • [27] Yang X.S., “Firefly Algorithm. Nature-Inspired Metaheuristic Algorithm”, Luniver Press Publishing, 79-90, (2008).
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Serkan Dereli

Raşit Köker Bu kişi benim

İsmail Öylek Bu kişi benim

Mükremin Ay Bu kişi benim

Yayımlanma Tarihi 1 Mart 2019
Gönderilme Tarihi 2 Ekim 2016
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Dereli, S., Köker, R., Öylek, İ., Ay, M. (2019). A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution. Politeknik Dergisi, 22(1), 75-79. https://doi.org/10.2339/politeknik.374830
AMA Dereli S, Köker R, Öylek İ, Ay M. A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution. Politeknik Dergisi. Mart 2019;22(1):75-79. doi:10.2339/politeknik.374830
Chicago Dereli, Serkan, Raşit Köker, İsmail Öylek, ve Mükremin Ay. “A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution”. Politeknik Dergisi 22, sy. 1 (Mart 2019): 75-79. https://doi.org/10.2339/politeknik.374830.
EndNote Dereli S, Köker R, Öylek İ, Ay M (01 Mart 2019) A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution. Politeknik Dergisi 22 1 75–79.
IEEE S. Dereli, R. Köker, İ. Öylek, ve M. Ay, “A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution”, Politeknik Dergisi, c. 22, sy. 1, ss. 75–79, 2019, doi: 10.2339/politeknik.374830.
ISNAD Dereli, Serkan vd. “A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution”. Politeknik Dergisi 22/1 (Mart 2019), 75-79. https://doi.org/10.2339/politeknik.374830.
JAMA Dereli S, Köker R, Öylek İ, Ay M. A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution. Politeknik Dergisi. 2019;22:75–79.
MLA Dereli, Serkan vd. “A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution”. Politeknik Dergisi, c. 22, sy. 1, 2019, ss. 75-79, doi:10.2339/politeknik.374830.
Vancouver Dereli S, Köker R, Öylek İ, Ay M. A Comprehensive Research on The Use of Swarm Algorithms in The Inverse Kinematics Solution. Politeknik Dergisi. 2019;22(1):75-9.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.