Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeni Sıcak Ultrasonik Yardımlı İmalat Ünitesi Tasarımı ve Ekonomik Analizi

Yıl 2019, , 277 - 282, 01.06.2019
https://doi.org/10.2339/politeknik.523697

Öz

Ultrasonik yardımlı işleme, takıma
veya iş parçasına belirli bir titreşim uygulanarak iş parçasının işlenmesi
süreci olup son işlem uygulamalarında yüzey özelliklerinin iyileşmesi, kesme
kuvvetlerinin azalması ve takım ömrünü arttırılması amacıyla uygulanır. Sıcak
işleme ise talaş kaldırması zor olan malzemelerin termal yumuşamasını
sağlayarak kesme işleminin kolaylaştırılmasını amaçlayan bir işlemdir. Bu işlem
sayesinde kesme kuvvetlerinde azalma ve takım ömründe artış görülmektedir.
İşlenebilirliği zor malzemeler için son yıllarda ortaya çıkan en önemli melez
yöntemlerden biri ise sıcak titreşim yardımlı talaşlı işlemedir. Bu işlem
ultrasonik yardımlı işleme ile sıcak işlemeyi birleştiren yeni bir melez imalat
yöntemidir. Bu çalışma kapsamında ülkemizde yaygın olmayan bu üretim tekniği
için yeni bir imalat ünitesi tasarımı yapılmıştır. Bu yeni üretim yöntemi ile
özellikle savunma ve havacılık sektöründe işlenebilirliği düşük olan
süperalaşım, paslanmaz çelik gibi malzemeler hem yüzey kalitesi arttıralarak imal
edilebilecek hem de takım maliyeti gibi masraflar azaltılacaktır. Yöntemin
hayata geçmesiyle de savunma ve havacılık gibi kritik bir alanlarda ileri
teknoloji edinilerek milli bir birikim sağlanmış olacaktır. Tasarlanan imalat
ünitesi üniversal torna tezgahlarına ilave bir modül olarak eklenebilmekte ve
ileride CNC tezgahlar için de yaygınlaştırılabilme potansiyeline sahiptir.  

Kaynakça

  • [1] Brehl D.E, Dow T.A., Review of vibration-assisted machining, Precision Engineering, 32(3): 153-172, (2008).
  • [2] Brehl D.E., Dow T.A, Garrard K.S., Microstructure fabrication using elliptical vibration-assisted machining. Proc ASPE, 39: 511–514, (2006).
  • [3] Shamoto E., Suzuki N., Tsuchiya E., Hori Y., Inagaki H.,Yoshino K., Development of 3-DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces. CIRP Ann, 54: 321–324, (2005).
  • [4] Shamato E., Ultraprecision micromachining of hardened die steel by applying elliptical vibration cutting, JSME News,16: 1–4, (2005).
  • [5] Ahmed N., Mitrofanov A.V., Babitsky V.I., Silberschmidt V.V., Analysis of material response to ultrasonic vibration loading in turning Inconel 718, Materials Science and Engineering: A, 424(25): 318-325, (2006).
  • [6] Babitsky V.I., Mitrofanov A.V., Silberschmidt V.V.,Ultrasonically assisted turning of aviation materials: simulations and experimental study, Ultrasonics, 42(1–9): 81-86, (2004).
  • [7] Cakir F., Gurgen S., Sofuoglu M., Celik O.N., Kushan M.C., Finite Element Modeling of Ultrasonic Assisted Turning of Ti6Al4V Alloy, Procedia - Social and Behavioral Sciences, 195: 2839-2848, (2015).
  • [8] Khajehzadeh M., Akhlaghi M., Razfar M.R., Finite element simulation and experimental investigation of tool temperature during ultrasonically assisted turning of aerospace aluminum using multicoated carbide inserts, Int J Adv Manuf Technology, 75: 116, (2014).
  • [9] Maurotto A., Muhammad R., Roy A., Babitsky V.I., Silberschmidt V.V., Comparing Machinability of Ti-15-3-3-3 and Ni-625 Alloys in Uat, Procedia CIRP, 1: 330-335, (2012).
  • [10] Patil S., Joshi S., Tewari A., Joshi S.S., Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V, Ultrasonics, 54(2): 694-705, (2014).
  • [11] Shamoto E, Suzuki N, Moriwaki T, Naoi Y., Development of Ultrasonic Elliptical Vibration Controller for Elliptical Vibration Cutting, CIRP Ann. - Manuf. Technol., 51(1): 327–330, (2002).
  • [12] Ahn JH, Lim, HS, Son SM., Improvement of Micro-Machining Accuracy by 2-Dimensional Vibration Cutting, Proc ASPE, 150–153, (1999).
  • [13] Nath C, Rahman M., Effect of Machining Parameters in Ultrasonic Vibration Cutting, Int. J. Mach. Tools Manuf., 48(9): 965–974, (2008).
  • [14] Nath C, Rahman M, Andrew SSK., A Study on Ultrasonic Vibration Cutting of Low Alloy Steel, J. Mater. Process. Technol., 192–193: 159–165, (2007).
  • [15] Muhammad R, Roy A, Silberschmidt VV., Finite Element Modelling of Conventional and Hybrid Oblique Turning Processes of Titanium Alloy, Procedia CIRP, 8: 510–515, (2013).
  • [16] Zhou M, Eow YT, Ngoi BKA, Lim EN., Vibration-Assisted Precision Machining of Steel with PCD Tools, Mater. Manuf. Process., 18(5): 825–834, (2003).
  • [17] Suzuki N, Nakamura A, Shamoto E, Harada K, Matsuo M, Osada M., Ultraprecision Micromachining of Hardened Steel by Applying Ultrasonic Elliptical Vibration Cutting, IEEE, 221–226, (2003).
  • [18] Weber H, Herberger J, Pilz R., Turning of Machinable Glass Ceramics with an Ultrasonically Vibrated Tool, CIRP Ann. - Manuf. Technol., 33(1): 85–87, (1984).
  • [19] Xiao M, Sato K, Karube S, Soutome T., The Effect of Tool Nose Radius in Ultrasonic Vibration Cutting of Hard Metal, Int. J. Mach. Tools Manuf., 43(13): 1375–1382, (2003).
  • [20] Kim JD, Choi IH., Micro Surface Phenomenon of Ductile Cutting in the Ultrasonic Vibration Cutting of Optical Plastics, J. Mater. Process. Technol., 68(1): 89–98, (1997).
  • [21] Kim JD, Lee ES., A Study of the Ultrasonic-Vibration Cutting of Carbon-Fiber Reinforced Plastics, J. Mater. Process. Technol., 43(2–4): 259–277, (1994).
  • [22] Xiao M, Karube S, Soutome T, Sato K., Analysis of Chatter Suppression in Vibration Cutting, Int. J. Mach. Tools Manuf., 42(15): 1677–1685, (2002).
  • [23] Tabatabaei SMK, Behbahani S, Mirian SM., Analysis of Ultrasonic Assisted Machining (UAM) on Regenerative Chatter in Turning, J. Mater. Process. Technol., 213(3): 418–425 (2013).
  • [24] Lotfi M, Amini S., Effect of Ultrasonic Vibration on Frictional Behavior of Tool-Chip Interface: Finite Element Analysis and Experimental Study, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2016).

Design and Economic Analysis of a Novel Hot Ultrasonic Machining System

Yıl 2019, , 277 - 282, 01.06.2019
https://doi.org/10.2339/politeknik.523697

Öz

Ultrasonic assisted machining uses vibrational cutting
generally for finishing operations to improve surface properties of the
workpiece, reduce cutting force and enhance tool life. On the other side, hot
machining takes advantage of thermal softening of difficult-to-cut materials
during operations. This process reduces cutting forces and increases tool life.
As a hybrid manufacturing method, hot ultrasonic machining is a high-rank
important process emerging in the last years. This method brings vibrational
cutting and hot machining together to be benefited from both techniques. Within
the scope of this study, a new manufacturing system was designed for this
production technique which is not common in Turkey. With this new production
method, materials such as superalloys and stainless steels, which are
particularly hard to machine materials in the defense and aerospace sectors,
can be manufactured both by increasing the surface quality and by reducing
costs such as tooling costs. With the realization of the method, advanced
technology will be gained in  critical
areas such as defense and aviation. The designed manufacturing system is able
to integrated into universal turning lathes and has a potential to be adapted
to CNC machines in the near future
.

Kaynakça

  • [1] Brehl D.E, Dow T.A., Review of vibration-assisted machining, Precision Engineering, 32(3): 153-172, (2008).
  • [2] Brehl D.E., Dow T.A, Garrard K.S., Microstructure fabrication using elliptical vibration-assisted machining. Proc ASPE, 39: 511–514, (2006).
  • [3] Shamoto E., Suzuki N., Tsuchiya E., Hori Y., Inagaki H.,Yoshino K., Development of 3-DOF ultrasonic vibration tool for elliptical vibration cutting of sculptured surfaces. CIRP Ann, 54: 321–324, (2005).
  • [4] Shamato E., Ultraprecision micromachining of hardened die steel by applying elliptical vibration cutting, JSME News,16: 1–4, (2005).
  • [5] Ahmed N., Mitrofanov A.V., Babitsky V.I., Silberschmidt V.V., Analysis of material response to ultrasonic vibration loading in turning Inconel 718, Materials Science and Engineering: A, 424(25): 318-325, (2006).
  • [6] Babitsky V.I., Mitrofanov A.V., Silberschmidt V.V.,Ultrasonically assisted turning of aviation materials: simulations and experimental study, Ultrasonics, 42(1–9): 81-86, (2004).
  • [7] Cakir F., Gurgen S., Sofuoglu M., Celik O.N., Kushan M.C., Finite Element Modeling of Ultrasonic Assisted Turning of Ti6Al4V Alloy, Procedia - Social and Behavioral Sciences, 195: 2839-2848, (2015).
  • [8] Khajehzadeh M., Akhlaghi M., Razfar M.R., Finite element simulation and experimental investigation of tool temperature during ultrasonically assisted turning of aerospace aluminum using multicoated carbide inserts, Int J Adv Manuf Technology, 75: 116, (2014).
  • [9] Maurotto A., Muhammad R., Roy A., Babitsky V.I., Silberschmidt V.V., Comparing Machinability of Ti-15-3-3-3 and Ni-625 Alloys in Uat, Procedia CIRP, 1: 330-335, (2012).
  • [10] Patil S., Joshi S., Tewari A., Joshi S.S., Modelling and simulation of effect of ultrasonic vibrations on machining of Ti6Al4V, Ultrasonics, 54(2): 694-705, (2014).
  • [11] Shamoto E, Suzuki N, Moriwaki T, Naoi Y., Development of Ultrasonic Elliptical Vibration Controller for Elliptical Vibration Cutting, CIRP Ann. - Manuf. Technol., 51(1): 327–330, (2002).
  • [12] Ahn JH, Lim, HS, Son SM., Improvement of Micro-Machining Accuracy by 2-Dimensional Vibration Cutting, Proc ASPE, 150–153, (1999).
  • [13] Nath C, Rahman M., Effect of Machining Parameters in Ultrasonic Vibration Cutting, Int. J. Mach. Tools Manuf., 48(9): 965–974, (2008).
  • [14] Nath C, Rahman M, Andrew SSK., A Study on Ultrasonic Vibration Cutting of Low Alloy Steel, J. Mater. Process. Technol., 192–193: 159–165, (2007).
  • [15] Muhammad R, Roy A, Silberschmidt VV., Finite Element Modelling of Conventional and Hybrid Oblique Turning Processes of Titanium Alloy, Procedia CIRP, 8: 510–515, (2013).
  • [16] Zhou M, Eow YT, Ngoi BKA, Lim EN., Vibration-Assisted Precision Machining of Steel with PCD Tools, Mater. Manuf. Process., 18(5): 825–834, (2003).
  • [17] Suzuki N, Nakamura A, Shamoto E, Harada K, Matsuo M, Osada M., Ultraprecision Micromachining of Hardened Steel by Applying Ultrasonic Elliptical Vibration Cutting, IEEE, 221–226, (2003).
  • [18] Weber H, Herberger J, Pilz R., Turning of Machinable Glass Ceramics with an Ultrasonically Vibrated Tool, CIRP Ann. - Manuf. Technol., 33(1): 85–87, (1984).
  • [19] Xiao M, Sato K, Karube S, Soutome T., The Effect of Tool Nose Radius in Ultrasonic Vibration Cutting of Hard Metal, Int. J. Mach. Tools Manuf., 43(13): 1375–1382, (2003).
  • [20] Kim JD, Choi IH., Micro Surface Phenomenon of Ductile Cutting in the Ultrasonic Vibration Cutting of Optical Plastics, J. Mater. Process. Technol., 68(1): 89–98, (1997).
  • [21] Kim JD, Lee ES., A Study of the Ultrasonic-Vibration Cutting of Carbon-Fiber Reinforced Plastics, J. Mater. Process. Technol., 43(2–4): 259–277, (1994).
  • [22] Xiao M, Karube S, Soutome T, Sato K., Analysis of Chatter Suppression in Vibration Cutting, Int. J. Mach. Tools Manuf., 42(15): 1677–1685, (2002).
  • [23] Tabatabaei SMK, Behbahani S, Mirian SM., Analysis of Ultrasonic Assisted Machining (UAM) on Regenerative Chatter in Turning, J. Mater. Process. Technol., 213(3): 418–425 (2013).
  • [24] Lotfi M, Amini S., Effect of Ultrasonic Vibration on Frictional Behavior of Tool-Chip Interface: Finite Element Analysis and Experimental Study, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. (2016).
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

M. Alper Sofuoğlu Bu kişi benim

Selim Gürgen

Fatih H. Çakır Bu kişi benim

Sezan Orak Bu kişi benim

Melih C. Kuşhan Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2019
Gönderilme Tarihi 14 Ocak 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Sofuoğlu, M. A., Gürgen, S., Çakır, F. H., Orak, S., vd. (2019). Yeni Sıcak Ultrasonik Yardımlı İmalat Ünitesi Tasarımı ve Ekonomik Analizi. Politeknik Dergisi, 22(2), 277-282. https://doi.org/10.2339/politeknik.523697
AMA Sofuoğlu MA, Gürgen S, Çakır FH, Orak S, Kuşhan MC. Yeni Sıcak Ultrasonik Yardımlı İmalat Ünitesi Tasarımı ve Ekonomik Analizi. Politeknik Dergisi. Haziran 2019;22(2):277-282. doi:10.2339/politeknik.523697
Chicago Sofuoğlu, M. Alper, Selim Gürgen, Fatih H. Çakır, Sezan Orak, ve Melih C. Kuşhan. “Yeni Sıcak Ultrasonik Yardımlı İmalat Ünitesi Tasarımı Ve Ekonomik Analizi”. Politeknik Dergisi 22, sy. 2 (Haziran 2019): 277-82. https://doi.org/10.2339/politeknik.523697.
EndNote Sofuoğlu MA, Gürgen S, Çakır FH, Orak S, Kuşhan MC (01 Haziran 2019) Yeni Sıcak Ultrasonik Yardımlı İmalat Ünitesi Tasarımı ve Ekonomik Analizi. Politeknik Dergisi 22 2 277–282.
IEEE M. A. Sofuoğlu, S. Gürgen, F. H. Çakır, S. Orak, ve M. C. Kuşhan, “Yeni Sıcak Ultrasonik Yardımlı İmalat Ünitesi Tasarımı ve Ekonomik Analizi”, Politeknik Dergisi, c. 22, sy. 2, ss. 277–282, 2019, doi: 10.2339/politeknik.523697.
ISNAD Sofuoğlu, M. Alper vd. “Yeni Sıcak Ultrasonik Yardımlı İmalat Ünitesi Tasarımı Ve Ekonomik Analizi”. Politeknik Dergisi 22/2 (Haziran 2019), 277-282. https://doi.org/10.2339/politeknik.523697.
JAMA Sofuoğlu MA, Gürgen S, Çakır FH, Orak S, Kuşhan MC. Yeni Sıcak Ultrasonik Yardımlı İmalat Ünitesi Tasarımı ve Ekonomik Analizi. Politeknik Dergisi. 2019;22:277–282.
MLA Sofuoğlu, M. Alper vd. “Yeni Sıcak Ultrasonik Yardımlı İmalat Ünitesi Tasarımı Ve Ekonomik Analizi”. Politeknik Dergisi, c. 22, sy. 2, 2019, ss. 277-82, doi:10.2339/politeknik.523697.
Vancouver Sofuoğlu MA, Gürgen S, Çakır FH, Orak S, Kuşhan MC. Yeni Sıcak Ultrasonik Yardımlı İmalat Ünitesi Tasarımı ve Ekonomik Analizi. Politeknik Dergisi. 2019;22(2):277-82.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.