Kalsiyum Kaynağı Olarak Yumurta Kabuğu Atığı ve Genleştirilmiş Polistiren Granülleri Kullanılarak Gözenekli Anortit Seramik Üretimi
Yıl 2022,
, 1235 - 1241, 01.10.2022
Merve Torman Kayalar
,
Gökhan Erdoğan
Ahmet Yavaş
,
Saadet Güler
,
Mücahit Sütçü
Öz
Mevcut çalışma kapsamında yumurta kabuğu atığı, ateş tuğlası ve genleştirilmiş polistiren (EPS) karışımları kullanılarak gözenekli ve hafif anortit seramikler üretilmiştir. İlk olarak, farklı oranlarda yumurta kabuğu atığı ile hazırlanan karışım numuneleri, uygun anortit bileşimini belirlemek için farklı sıcaklıklarda pişirilmiştir. Yüksek oranda gözenekli anortit seramikler üretmek için belirlenen en uygun bileşime, farklı miktarlarda EPS ilavesi yapılmıştır ve belirli sıcaklıkta pişirilerek gözenekli numuneler üretilmiştir. Hacimce %0-%30 aralığında EPS ilavesi ile elde edilen karışımlardan başarılı bir şekilde yüksek gözenekli anortit seramikler üretilmiştir. Fiziksel özellikleri, basınç dayanımı ve ısıl iletkenlik değerleri incelenmiştir. Anortit seramiklerin termal iletkenliği yoğunluktaki azalmayla orantılı olarak 0,39 W/m·K (1,00 g/cm3)'den 0,11 W/m·K (0,78 g/cm3)'e bir azalma göstermiştir. Elde edilen sonuçlara göre, yumurta kabuğu atıklarının yeniden kullanılmasıyla üretilen gözenekli anortit seramiklerinin, yüksek sıcaklıklar gerektiren uygulamalarda kullanıma uygun olduğu bulunmuştur.
Kaynakça
- [1] Sutcu, M., Akkurt, S., Bayram, A., and Uluca, U., ''Production of anorthite refractory insulating firebrick from mixtures of clay and recycled paper waste with sawdust addition", Ceram. Int., 38, 1033–1041 (2012).
- [2] Sutcu, M. and Akkurt, S., ''Utilization of recycled paper processing residues and clay of different sources for the production of porous anorthite ceramics", J. Eur. Ceram. Soc., 30, 1785–1793 (2010).
- [3] ASTM C 155-97, "Standard Classification of Insulating Firebrick", (2002).
- [4] Li, Y., Cheng, X., Gong, L., Feng, J., Cao, W., Zhang, R., and Zhang, H., ''Fabrication and characterization of anorthite foam ceramics having low thermal conductivity", J. Eur. Ceram. Soc., 35, 267–275 (2015).
- [5] Ugheoke B. I., Onche E. O., Namessan O. N., and A. G. A., ''Property Optimization of Kaolin-Rice Husk Insulating Fire-Bricks", Leonardo Electron. J. Pract. Technol., 9, 167–178 (2006).
- [6] Yurkov, A. L. and Aksel’rod, L. M., ''Properties of heat-insulating materials (A review)", Refract. Ind. Ceram., 46, 170–174 (2005).
- [7] Yang, F., Li, C., Lin, Y., and Wang, C. A., ''Fabrication of porous mullite ceramics with high porosity using foam-gelcasting", Key Eng. Mater., 512–515, 580–585 (2012).
- [8] Han, Y., Li, C., Bian, C., Li, S., and Wang, C. A., ''Porous anorthite ceramics with ultra-low thermal conductivity", J. Eur. Ceram. Soc., 33, 2573–2578 (2013).
- [9] Wu, L., Li, C., Li, H., Li, S., and Wang, C., ''Microstructure and properties of porous anorthite/mullite whiskers ceramics with high porosity", Int. J. Appl. Ceram. Technol., 17, 2104–2113 (2020).
- [10] Naviroj, M., Miller, S. M., Colombo, P., and Faber, K. T., ''Directionally aligned macroporous SiOC via freeze casting of preceramic polymers", J. Eur. Ceram. Soc., 35, 2225–2232 (2015).
- [11] Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., and Park, H. C., ''Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique", J. Porous Mater., 20, 219–226 (2013).
- [12] Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., and Zhang, H., ''Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin", Ceram. Int., 42, 12414–12421 (2016).
- [13] Du, Z., Yao, D., Xia, Y., Zuo, K., Yin, J., Liang, H., and Zeng, Y. P., ''Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics", Ceram. Int., 46, 12942–12947 (2020).
- [14] Zhang, D. Y., Qu, L., and Yuan, W. J., ''Preparation of lightweight mullite-anorthite refractories by different routes", Solid State Phenom., 281 SSP, 150–155 (2018).
- [15] Manap, N. R. A. and Jais, U. S., ''Influence of concentration of pore forming agent on porosity of SiO 2 ceramic from rice husk ash", Mater. Res. Innov., 13, 382–385 (2009).
- [16] Rahman, M. H., Islam, M. T., Minhaj, T. I., Azad, M. A. K., Hasan, M. M., and Haque, A. A. M. R., ''Study of thermal conductivity and mechanical property of insulating firebrick produced by local clay and petroleum coal dust as raw materials", Procedia Eng., 105, 121–128 (2015).
- [17] Priogov AA, Rakina VP, Mirakyan MM, V. N., ''Anorthite Insulating Refractory", Refractory, 36–40 (1970).
- [18] Zaidan, S. A., ''Manufacturing of porous refractories from Iraqi Kaolin by adding expanded polystyrene waste", Iraqi J. Phys., 16, 118–126 (2018).
- [19] Horie, Eiji, Saeki, Takeo, Oosawa, Shinichiro, Hisaki, Hideo, Tanetani, N., Process for making heat insulating firebricks, European Patent : 80300472.0, (2013).
- [20] Dergaputskaya, L.A., Gaodu, A. N., Litvin, L. G., ''Anorthite Lightweight Refractories for Service in Carbon-Containing Media", Ukr. Sci. Inst. Refract., 7, 40–42 (1980).
- [21] Kavalci, S., Yalamaç, E., and Akkurt, S., ''Effects of boron addition and intensive grinding on synthesis of anorthite ceramics", Ceram. Int., 34, 1629–1635 (2008).
- [22] Marques, V. M. F., Tulyaganov, D. U., Agathopoulos, S., Gataullin, V. K., Kothiyal, G. P., and Ferreira, J. M. F., ''Low temperature synthesis of anorthite based glass-ceramics via sintering and crystallization of glass-powder compacts", J. Eur. Ceram. Soc., 26, 2503–2510 (2006).
- [23] Richard F. R., "Anorthite Glass-Ceramics", U.S Patent : 4,187.1.15, (1980).
- [24] Cheng, X., Ke, S., Wang, Q., Wang, H., Shui, A., and Liu, P., ''Fabrication and characterization of anorthite-based ceramic using mineral raw materials", Ceram. Int., 38, 3227–3235 (2012).
- [25] Park, Z. H., Shin, H. S., Yeo, D. H., Kim, J. H., Nahm, S., and Gu, S. Il, ''Strength properties of a LTCC substrate material with an anorthite glass composition", J. Korean Phys. Soc., 53, 2654–2658 (2008).
- [26] Taskiran, M. U., Demirkol, N., and Capoglu, A., ''A new porcelainised stoneware material based on anorthite", J. Eur. Ceram. Soc., 25, 293–300 (2005).
- [27] Taskiran, M. U., Demirkol, N., and Capoglu, A., ''Influence of mixing/milling on sintering and technological properties of anorthite based porcelainised stoneware", Ceram. Int., 32, 325–330 (2006).
- [28] Capoglu, A., ''A novel low-clay translucent whiteware based on anorthite", J. Eur. Ceram. Soc., 31, 321–329 (2011).
- [29] Agathopoulos, S., Tulyaganov, D. U., Marques, P. A. A. P., Ferro, M. C., Fernandes, M. H. V., and Correia, R. N., ''The fluorapatite-anorthite system in biomedicine", Biomaterials, 24, 1317–1331 (2003).
- [30] Wu, L., Li, C., Li, H., Wang, H., Yu, W., Chen, K., and Zhang, X., ''Preparation and characteristics of porous anorthite ceramics with high porosity and high-temperature strength", Int. J. Appl. Ceram. Technol., 17, 963–973 (2020).
- [31] Kurama, S. and Ozel, E., ''The influence of different CaO source in the production of anorthite ceramics", Ceram. Int., 35, 827–830 (2009).
- [32] Brosnan, D. A., "Low Density Ceramics Produced From Paper Recycling Residuals", Patent No: US 6,2569,797 B1, (2003).
- [33] El-Maghraby, H. F., Aly, A. A., and Naga, S. M., ''Utilization of sugar-beet industry by-products for the production of anorthite", InterCeram Int. Ceram. Rev., 62, 426–428 (2013).
- [34] Qin, J., Cui, C., Cui, X., Hussain, A., Yang, C., and Yang, S., ''Recycling of lime mud and fly ash for fabrication of anorthite ceramic at low sintering temperature", Ceram. Int., 41, 5648–5655 (2015).
- [35] Zong, Y., Wan, Q., and Cang, D., ''Preparation of anorthite-based porous ceramics using high-alumina fly ash microbeads and steel slag", Ceram. Int., 45, 22445–22451 (2019).
- [36] Liu, T., Tang, Y., Han, L., Song, J., Luo, Z., and Lu, A., ''Recycling of harmful waste lead-zinc mine tailings and fly ash for preparation of inorganic porous ceramics", Ceram. Int., 43, 4910–4918 (2017).
- [37] Waheed, M., Yousaf, M., Shehzad, A., Inam-Ur-Raheem, M., Khan, M. K. I., Khan, M. R., Ahmad, N., Abdullah, and Aadil, R. M., ''Channelling eggshell waste to valuable and utilizable products: A comprehensive review", Trends Food Sci. Technol., 106, 78–90 (2020).
- [38] Oliveira, D. A., Benelli, P., and Amante, E. R., ''A literature review on adding value to solid residues: Egg shells", J. Clean. Prod., 46, 42–47 (2013).
- [39] Vichaphund, S., Kitiwan, M., Atong, D., and Thavorniti, P., ''Microwave synthesis of wollastonite powder from eggshells", J. Eur. Ceram. Soc., 31, 2435–2440 (2011).
- [40] Leite, F. H. G., Almeida, T. F., Faria, R. T., and Holanda, J. N. F., ''Synthesis and characterization of calcium silicate insulating material using avian eggshell waste", Ceram. Int., 43, 4674–4679 (2017).
- [41] ASTM C 20-00, "Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water", (2010).
- [42] ASTM C 134-95, "Standard Test Methods for Size, Dimensional Measurements, and Bulk Density of Refractory Brick and Insulating Firebrick", (2010).
Fabrication of Porous Anorthite Ceramics Using Eggshell Waste as a Calcium Source and Expanded Polystyrene Granules
Yıl 2022,
, 1235 - 1241, 01.10.2022
Merve Torman Kayalar
,
Gökhan Erdoğan
Ahmet Yavaş
,
Saadet Güler
,
Mücahit Sütçü
Öz
Within the scope of present work, porous and lightweight anorthite ceramics by utilizing admixtures of eggshell waste, fireclay, and expanded polystyrene (EPS) addition has been produced. First, samples of mixtures prepared with different proportions of eggshell waste were fired at different temperatures in order to determine the appropriate anorthite composition. Later, in order to produce high porosity anorthite ceramics, different amounts of EPS are added to the most suitable composition determined and porous samples were produced by firing at the certain temperature. The high degree of porous anorthite ceramics from the admixtures in the range of 0 to 30 vol.% EPS addition were satisfactorily fabricated. The physical characteristics, compressive strength and thermal conductivity were examined. Thermal conductivity of the anorthite ceramics showed a decline from 0.39 W/m·K (1.00 g/cm3) to 0.11 W/m·K (0.78 g/cm3) in proportion to the decrease in density. It has been found from the results in which these porous materials produced by the reuse of eggshell waste are suitable for use in various applications requiring elevated temperatures.
Kaynakça
- [1] Sutcu, M., Akkurt, S., Bayram, A., and Uluca, U., ''Production of anorthite refractory insulating firebrick from mixtures of clay and recycled paper waste with sawdust addition", Ceram. Int., 38, 1033–1041 (2012).
- [2] Sutcu, M. and Akkurt, S., ''Utilization of recycled paper processing residues and clay of different sources for the production of porous anorthite ceramics", J. Eur. Ceram. Soc., 30, 1785–1793 (2010).
- [3] ASTM C 155-97, "Standard Classification of Insulating Firebrick", (2002).
- [4] Li, Y., Cheng, X., Gong, L., Feng, J., Cao, W., Zhang, R., and Zhang, H., ''Fabrication and characterization of anorthite foam ceramics having low thermal conductivity", J. Eur. Ceram. Soc., 35, 267–275 (2015).
- [5] Ugheoke B. I., Onche E. O., Namessan O. N., and A. G. A., ''Property Optimization of Kaolin-Rice Husk Insulating Fire-Bricks", Leonardo Electron. J. Pract. Technol., 9, 167–178 (2006).
- [6] Yurkov, A. L. and Aksel’rod, L. M., ''Properties of heat-insulating materials (A review)", Refract. Ind. Ceram., 46, 170–174 (2005).
- [7] Yang, F., Li, C., Lin, Y., and Wang, C. A., ''Fabrication of porous mullite ceramics with high porosity using foam-gelcasting", Key Eng. Mater., 512–515, 580–585 (2012).
- [8] Han, Y., Li, C., Bian, C., Li, S., and Wang, C. A., ''Porous anorthite ceramics with ultra-low thermal conductivity", J. Eur. Ceram. Soc., 33, 2573–2578 (2013).
- [9] Wu, L., Li, C., Li, H., Li, S., and Wang, C., ''Microstructure and properties of porous anorthite/mullite whiskers ceramics with high porosity", Int. J. Appl. Ceram. Technol., 17, 2104–2113 (2020).
- [10] Naviroj, M., Miller, S. M., Colombo, P., and Faber, K. T., ''Directionally aligned macroporous SiOC via freeze casting of preceramic polymers", J. Eur. Ceram. Soc., 35, 2225–2232 (2015).
- [11] Lee, J. H., Choi, H. J., Yoon, S. Y., Kim, B. K., and Park, H. C., ''Porous mullite ceramics derived from coal fly ash using a freeze-gel casting/polymer sponge technique", J. Porous Mater., 20, 219–226 (2013).
- [12] Wang, Z., Feng, P., Wang, X., Geng, P., Akhtar, F., and Zhang, H., ''Fabrication and properties of freeze-cast mullite foams derived from coal-series kaolin", Ceram. Int., 42, 12414–12421 (2016).
- [13] Du, Z., Yao, D., Xia, Y., Zuo, K., Yin, J., Liang, H., and Zeng, Y. P., ''Highly porous silica foams prepared via direct foaming with mixed surfactants and their sound absorption characteristics", Ceram. Int., 46, 12942–12947 (2020).
- [14] Zhang, D. Y., Qu, L., and Yuan, W. J., ''Preparation of lightweight mullite-anorthite refractories by different routes", Solid State Phenom., 281 SSP, 150–155 (2018).
- [15] Manap, N. R. A. and Jais, U. S., ''Influence of concentration of pore forming agent on porosity of SiO 2 ceramic from rice husk ash", Mater. Res. Innov., 13, 382–385 (2009).
- [16] Rahman, M. H., Islam, M. T., Minhaj, T. I., Azad, M. A. K., Hasan, M. M., and Haque, A. A. M. R., ''Study of thermal conductivity and mechanical property of insulating firebrick produced by local clay and petroleum coal dust as raw materials", Procedia Eng., 105, 121–128 (2015).
- [17] Priogov AA, Rakina VP, Mirakyan MM, V. N., ''Anorthite Insulating Refractory", Refractory, 36–40 (1970).
- [18] Zaidan, S. A., ''Manufacturing of porous refractories from Iraqi Kaolin by adding expanded polystyrene waste", Iraqi J. Phys., 16, 118–126 (2018).
- [19] Horie, Eiji, Saeki, Takeo, Oosawa, Shinichiro, Hisaki, Hideo, Tanetani, N., Process for making heat insulating firebricks, European Patent : 80300472.0, (2013).
- [20] Dergaputskaya, L.A., Gaodu, A. N., Litvin, L. G., ''Anorthite Lightweight Refractories for Service in Carbon-Containing Media", Ukr. Sci. Inst. Refract., 7, 40–42 (1980).
- [21] Kavalci, S., Yalamaç, E., and Akkurt, S., ''Effects of boron addition and intensive grinding on synthesis of anorthite ceramics", Ceram. Int., 34, 1629–1635 (2008).
- [22] Marques, V. M. F., Tulyaganov, D. U., Agathopoulos, S., Gataullin, V. K., Kothiyal, G. P., and Ferreira, J. M. F., ''Low temperature synthesis of anorthite based glass-ceramics via sintering and crystallization of glass-powder compacts", J. Eur. Ceram. Soc., 26, 2503–2510 (2006).
- [23] Richard F. R., "Anorthite Glass-Ceramics", U.S Patent : 4,187.1.15, (1980).
- [24] Cheng, X., Ke, S., Wang, Q., Wang, H., Shui, A., and Liu, P., ''Fabrication and characterization of anorthite-based ceramic using mineral raw materials", Ceram. Int., 38, 3227–3235 (2012).
- [25] Park, Z. H., Shin, H. S., Yeo, D. H., Kim, J. H., Nahm, S., and Gu, S. Il, ''Strength properties of a LTCC substrate material with an anorthite glass composition", J. Korean Phys. Soc., 53, 2654–2658 (2008).
- [26] Taskiran, M. U., Demirkol, N., and Capoglu, A., ''A new porcelainised stoneware material based on anorthite", J. Eur. Ceram. Soc., 25, 293–300 (2005).
- [27] Taskiran, M. U., Demirkol, N., and Capoglu, A., ''Influence of mixing/milling on sintering and technological properties of anorthite based porcelainised stoneware", Ceram. Int., 32, 325–330 (2006).
- [28] Capoglu, A., ''A novel low-clay translucent whiteware based on anorthite", J. Eur. Ceram. Soc., 31, 321–329 (2011).
- [29] Agathopoulos, S., Tulyaganov, D. U., Marques, P. A. A. P., Ferro, M. C., Fernandes, M. H. V., and Correia, R. N., ''The fluorapatite-anorthite system in biomedicine", Biomaterials, 24, 1317–1331 (2003).
- [30] Wu, L., Li, C., Li, H., Wang, H., Yu, W., Chen, K., and Zhang, X., ''Preparation and characteristics of porous anorthite ceramics with high porosity and high-temperature strength", Int. J. Appl. Ceram. Technol., 17, 963–973 (2020).
- [31] Kurama, S. and Ozel, E., ''The influence of different CaO source in the production of anorthite ceramics", Ceram. Int., 35, 827–830 (2009).
- [32] Brosnan, D. A., "Low Density Ceramics Produced From Paper Recycling Residuals", Patent No: US 6,2569,797 B1, (2003).
- [33] El-Maghraby, H. F., Aly, A. A., and Naga, S. M., ''Utilization of sugar-beet industry by-products for the production of anorthite", InterCeram Int. Ceram. Rev., 62, 426–428 (2013).
- [34] Qin, J., Cui, C., Cui, X., Hussain, A., Yang, C., and Yang, S., ''Recycling of lime mud and fly ash for fabrication of anorthite ceramic at low sintering temperature", Ceram. Int., 41, 5648–5655 (2015).
- [35] Zong, Y., Wan, Q., and Cang, D., ''Preparation of anorthite-based porous ceramics using high-alumina fly ash microbeads and steel slag", Ceram. Int., 45, 22445–22451 (2019).
- [36] Liu, T., Tang, Y., Han, L., Song, J., Luo, Z., and Lu, A., ''Recycling of harmful waste lead-zinc mine tailings and fly ash for preparation of inorganic porous ceramics", Ceram. Int., 43, 4910–4918 (2017).
- [37] Waheed, M., Yousaf, M., Shehzad, A., Inam-Ur-Raheem, M., Khan, M. K. I., Khan, M. R., Ahmad, N., Abdullah, and Aadil, R. M., ''Channelling eggshell waste to valuable and utilizable products: A comprehensive review", Trends Food Sci. Technol., 106, 78–90 (2020).
- [38] Oliveira, D. A., Benelli, P., and Amante, E. R., ''A literature review on adding value to solid residues: Egg shells", J. Clean. Prod., 46, 42–47 (2013).
- [39] Vichaphund, S., Kitiwan, M., Atong, D., and Thavorniti, P., ''Microwave synthesis of wollastonite powder from eggshells", J. Eur. Ceram. Soc., 31, 2435–2440 (2011).
- [40] Leite, F. H. G., Almeida, T. F., Faria, R. T., and Holanda, J. N. F., ''Synthesis and characterization of calcium silicate insulating material using avian eggshell waste", Ceram. Int., 43, 4674–4679 (2017).
- [41] ASTM C 20-00, "Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water", (2010).
- [42] ASTM C 134-95, "Standard Test Methods for Size, Dimensional Measurements, and Bulk Density of Refractory Brick and Insulating Firebrick", (2010).