Araştırma Makalesi
BibTex RIS Kaynak Göster

Baş Plaka Fantomunda Kullanılan Biyomalzemelerde Oluşan İkinci Pikin Proton Bragg Pikine Etkisi

Yıl 2020, Cilt: 23 Sayı: 1, 129 - 136, 01.03.2020
https://doi.org/10.2339/politeknik.523001

Öz

Bu çalışmada Monte Carlo benzetimi
ile biyomalzemeli baş plaka fantomunda terapötik enerji aralığında kalan
160-220 MeV’lik protonların Bragg eğrileri hesaplanmıştır. Biyomalzeme olarak
Ti6Al4V, Co-Ni-Cr-Mo, Al2O3,
Paslanmaz Çelik, Nital, Vitallium ve Teflon seçilmiş, biyomalzeme türünün ve kalınlığının
Bragg eğrisi üzerine etkisi incelenmiştir. Protonlar az yoğundan daha yoğun bir
katmana geçerken Bragg eğrisinde ikinci bir pik oluşur. Baş-plaka fantomunda
ikinci pik ve genliğinin Bragg piki üzerine etkisi de incelenmiştir. Kortikal
kemik kalınlığı arttıkça Bragg piki konumunun % 0,47-3,3 arasında azaldığı
görülmüştür. Proton enerjisi arttıkça ikinci pikin genliğinin ve Bragg pik
konumuna etkisinin azaldığı görülmüştür. Kullanılan biyomalzemeler içerisinde
kortikal kemiğe en yakın biyomalzemenin teflon olduğu tespit edilmiştir.

Kaynakça

  • Wilson, R.R., “Radiological use of fast protons”, Radiology, 47:487-91, (1946).
  • Lawrence, J.H., Tobias, C.A., Born, J.I., Mccombs, R.K., Roberts, J.E. and Anger, H.O., “Pituitary irradiation with highenergy proton beams: a preliminary report”, Cancer Res, 18(2):121-34, (1958).
  • Gragoudas, E., Li, W., Goitein, M., Lane, A.M., Munzenrider, J.E. and Egan K.M., “Evidence-based estimates of outcome in patients irradiated for intraocular melanoma”, Arch Ophthalmol, 120(12):1665-71, (2002).
  • Gottschalk, B., “Physics of proton interactions in matter”, In: Pagannetti H, editor, Proton Therapy Physics, USA: Taylor & Francis Inc.; Chapter 2, p.20-57, (2012).
  • Carlsson, A.K., Andrea, P. and Brahme, A. “Monte Carlo and analytical calculation of computerized treatment plan optimization”, Phys. Med. Biol. 42, 1033-1053, (1997).
  • [6] Hall, E.J., Kellerer, A.M., Rossi, H.H. and Lam, Y-M.P. “the relative biological effectiveness of 160 MeV protons-II”, Int. Radiation Oncology Biol. Phys., Vo.4 pp. 1009-1013, (1978).
  • Li, J.S., Shahine, B., Fourkal, E. and Ma, C-M., “A particle track-repeating algorithm for proton beam dose calculation”, Phys. Med. Biol., 50, 1001-1010, (2005).
  • Seravalli, E., Robert, C., Baver, J., Stichelbaut, F., Kurz, C., Smeets, J., Van, N.T. C., Schaart, D.R., Buvat, K., Parodi, K. and Verhaegen, F., “Monte Carlo calculations of positron emitter yields in proton radiotherapy”, Phys. Med. Biol., 57, 1659-1673, (2012).
  • Edwards, B.N. and Gold, B.R., “Analysis of surface cleanliness of three commercial dental implants”, Biomaterials, 13,775–780, (1992).
  • Sanan, A. and Haines, S.J., “Repairing holes in the head: A history of cranioplasty”, Neurosurgery, 40:588-603, (1997).
  • Aydın, S., Kucukyuruk, B., Abuzayed, B. and Sanus, G.Z., “Cranioplasty: Review of materials and techniques”, Journal of Neurosciences in Rural Practice, 2, (2011).
  • Gladstone, H.B., McDermott, M.W. and Cooke, D.D., “Implants for cranioplasty”, Otolaryngol Clin North Am, 28:381-400, (1995).
  • Jandt, D.K., “Evolutions, Revolutions and Trends in Biomaterials Science – A Perspective”, Advanced Engineerıng Materials, 9, (2007).
  • Jones, D. W., “Adv. Ceram. Mater”, Key Eng. Mater., 122, 345, (1996).
  • Kohn, D.H. and Ducheyne, P., In “Materials Science and Technology—A Comprehensive Treatment”, edited by R. W. Cahn, P. Haasen and E. J. Kramer, “Medical and Dental Materials”, edited by D. F. Williams (VCH Publishers Inc., New York) vol. 14, p. 41, (1992).
  • Webster, T.J. and Ejiofor, J.U., “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo”, Biomater, 25, 4731, (2004).
  • Molinari, A., Straffelini, G., Tesi, B. and Bacci, T., “Dry sliding wear mechanisms of the Ti6Al4V alloy”, Wear, 208:105–12, (1997).
  • Long, M. and Rack, H.J., “Titanium alloys in total joint replacement – a materials science perspective”, Biomaterials, 19:1621–39, (1998).
  • Ganesh, B.K.C., Ramanaih, N. and Chandrasekhar, R.P.V., “Dry sliding wear behavior of Ti–6Al–4V implant alloy subjected to various surface treatments”, Trans. Indian Inst. Metals., 65:425–34, (2012).
  • Sanus, G.Z., Tanrıverdi, T., Ulu, M.O., Kafadar, A.M., Tanrıover, N. and Ozlen, F., “Use of Cortoss as an alternative material in calvarial defects: The first clinical results in cranioplasty”, J Craniofac Surg, 19:88-95, (2008).
  • Griffith, L. G., “Polymeric biomaterials”, Acta. Mater. 48, 263, (2000).
  • Wang, T., “Effect of substrate oxidation on improving the quality of hydroxyapatite coating on CoNiCrMo”, Journal of Materıals Science, 39, 4309– 4312, (2004).
  • Sundgren, J.E., Bodö, P. and Lundström, I., “Auger Electron Spectroscopic Studies of the Interface between Human Tissue and Implants of Titanium and Stainless Steel”, Journal of Colloid and Interface Science, Vol. 110, No. 1, (1986).
  • Dingfelder, M., Inokuit, M. and Paretzke, H.G., “Inelastic-collision cross sections of liquid water for interactions of energetic protons”, Radiat. Phys. Chem. 59, 255-275, (2000).
  • Internet: SRIM, http://www.srim.org/ (18.05.2018)
  • Archambeau, J.O., Bennett, G.W., Levine G.S., Cowen R, and Akanuma A., “Proton Radiation Therapy”, Radiology, 110:445-457, (1974).
  • Fippel, M. and Soukup, M. A., “Monte Carlo dose calculation algorithm for proton therapy”, Med. Phys. 31,8, (2004).
  • Medin, J. and Andreo, P., “Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV)”, Phys. Med. Biol., 42, 89-105, (1996).

The Effect of the Second Peak formed in Biomaterials used in a Slab Head Phantom on the Proton Bragg Peak

Yıl 2020, Cilt: 23 Sayı: 1, 129 - 136, 01.03.2020
https://doi.org/10.2339/politeknik.523001

Öz

In this study, Bragg curves of 160-220 MeV protons in
the therapeutic energy range were calculated with Monte Carlo simulation. Ti6Al4V,
Co-Ni-Cr-Mo, Al2O3, Stainless Steel, Nital, Vitallium and
Teflon were selected as biomaterials and the effect of biomaterial type and
thickness on Bragg curve was investigated. A second peak is formed when protons
pass from a less dense to a denser layer. The effect of the second peak and
amplitude on the Bragg peak is also investigated in the slab head phantom. It
has been seen that as the cortical bone thickness increases, the Bragg peak
position decreases by 0.47-3.3%. As the proton energy increased, the amplitude
of the second peak and the effect of the Bragg peak position decreased. The
biomaterial which gives the closest results to the cortical bone among the
biomaterials used was found to be Teflon.

Kaynakça

  • Wilson, R.R., “Radiological use of fast protons”, Radiology, 47:487-91, (1946).
  • Lawrence, J.H., Tobias, C.A., Born, J.I., Mccombs, R.K., Roberts, J.E. and Anger, H.O., “Pituitary irradiation with highenergy proton beams: a preliminary report”, Cancer Res, 18(2):121-34, (1958).
  • Gragoudas, E., Li, W., Goitein, M., Lane, A.M., Munzenrider, J.E. and Egan K.M., “Evidence-based estimates of outcome in patients irradiated for intraocular melanoma”, Arch Ophthalmol, 120(12):1665-71, (2002).
  • Gottschalk, B., “Physics of proton interactions in matter”, In: Pagannetti H, editor, Proton Therapy Physics, USA: Taylor & Francis Inc.; Chapter 2, p.20-57, (2012).
  • Carlsson, A.K., Andrea, P. and Brahme, A. “Monte Carlo and analytical calculation of computerized treatment plan optimization”, Phys. Med. Biol. 42, 1033-1053, (1997).
  • [6] Hall, E.J., Kellerer, A.M., Rossi, H.H. and Lam, Y-M.P. “the relative biological effectiveness of 160 MeV protons-II”, Int. Radiation Oncology Biol. Phys., Vo.4 pp. 1009-1013, (1978).
  • Li, J.S., Shahine, B., Fourkal, E. and Ma, C-M., “A particle track-repeating algorithm for proton beam dose calculation”, Phys. Med. Biol., 50, 1001-1010, (2005).
  • Seravalli, E., Robert, C., Baver, J., Stichelbaut, F., Kurz, C., Smeets, J., Van, N.T. C., Schaart, D.R., Buvat, K., Parodi, K. and Verhaegen, F., “Monte Carlo calculations of positron emitter yields in proton radiotherapy”, Phys. Med. Biol., 57, 1659-1673, (2012).
  • Edwards, B.N. and Gold, B.R., “Analysis of surface cleanliness of three commercial dental implants”, Biomaterials, 13,775–780, (1992).
  • Sanan, A. and Haines, S.J., “Repairing holes in the head: A history of cranioplasty”, Neurosurgery, 40:588-603, (1997).
  • Aydın, S., Kucukyuruk, B., Abuzayed, B. and Sanus, G.Z., “Cranioplasty: Review of materials and techniques”, Journal of Neurosciences in Rural Practice, 2, (2011).
  • Gladstone, H.B., McDermott, M.W. and Cooke, D.D., “Implants for cranioplasty”, Otolaryngol Clin North Am, 28:381-400, (1995).
  • Jandt, D.K., “Evolutions, Revolutions and Trends in Biomaterials Science – A Perspective”, Advanced Engineerıng Materials, 9, (2007).
  • Jones, D. W., “Adv. Ceram. Mater”, Key Eng. Mater., 122, 345, (1996).
  • Kohn, D.H. and Ducheyne, P., In “Materials Science and Technology—A Comprehensive Treatment”, edited by R. W. Cahn, P. Haasen and E. J. Kramer, “Medical and Dental Materials”, edited by D. F. Williams (VCH Publishers Inc., New York) vol. 14, p. 41, (1992).
  • Webster, T.J. and Ejiofor, J.U., “Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo”, Biomater, 25, 4731, (2004).
  • Molinari, A., Straffelini, G., Tesi, B. and Bacci, T., “Dry sliding wear mechanisms of the Ti6Al4V alloy”, Wear, 208:105–12, (1997).
  • Long, M. and Rack, H.J., “Titanium alloys in total joint replacement – a materials science perspective”, Biomaterials, 19:1621–39, (1998).
  • Ganesh, B.K.C., Ramanaih, N. and Chandrasekhar, R.P.V., “Dry sliding wear behavior of Ti–6Al–4V implant alloy subjected to various surface treatments”, Trans. Indian Inst. Metals., 65:425–34, (2012).
  • Sanus, G.Z., Tanrıverdi, T., Ulu, M.O., Kafadar, A.M., Tanrıover, N. and Ozlen, F., “Use of Cortoss as an alternative material in calvarial defects: The first clinical results in cranioplasty”, J Craniofac Surg, 19:88-95, (2008).
  • Griffith, L. G., “Polymeric biomaterials”, Acta. Mater. 48, 263, (2000).
  • Wang, T., “Effect of substrate oxidation on improving the quality of hydroxyapatite coating on CoNiCrMo”, Journal of Materıals Science, 39, 4309– 4312, (2004).
  • Sundgren, J.E., Bodö, P. and Lundström, I., “Auger Electron Spectroscopic Studies of the Interface between Human Tissue and Implants of Titanium and Stainless Steel”, Journal of Colloid and Interface Science, Vol. 110, No. 1, (1986).
  • Dingfelder, M., Inokuit, M. and Paretzke, H.G., “Inelastic-collision cross sections of liquid water for interactions of energetic protons”, Radiat. Phys. Chem. 59, 255-275, (2000).
  • Internet: SRIM, http://www.srim.org/ (18.05.2018)
  • Archambeau, J.O., Bennett, G.W., Levine G.S., Cowen R, and Akanuma A., “Proton Radiation Therapy”, Radiology, 110:445-457, (1974).
  • Fippel, M. and Soukup, M. A., “Monte Carlo dose calculation algorithm for proton therapy”, Med. Phys. 31,8, (2004).
  • Medin, J. and Andreo, P., “Monte Carlo calculated stopping-power ratios, water/air, for clinical proton dosimetry (50-250 MeV)”, Phys. Med. Biol., 42, 89-105, (1996).
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Mustafa Hicabi Bölükdemir 0000-0002-7911-7863

Fatih Ekinci 0000-0002-1011-1105

Yayımlanma Tarihi 1 Mart 2020
Gönderilme Tarihi 6 Şubat 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 23 Sayı: 1

Kaynak Göster

APA Bölükdemir, M. H., & Ekinci, F. (2020). Baş Plaka Fantomunda Kullanılan Biyomalzemelerde Oluşan İkinci Pikin Proton Bragg Pikine Etkisi. Politeknik Dergisi, 23(1), 129-136. https://doi.org/10.2339/politeknik.523001
AMA Bölükdemir MH, Ekinci F. Baş Plaka Fantomunda Kullanılan Biyomalzemelerde Oluşan İkinci Pikin Proton Bragg Pikine Etkisi. Politeknik Dergisi. Mart 2020;23(1):129-136. doi:10.2339/politeknik.523001
Chicago Bölükdemir, Mustafa Hicabi, ve Fatih Ekinci. “Baş Plaka Fantomunda Kullanılan Biyomalzemelerde Oluşan İkinci Pikin Proton Bragg Pikine Etkisi”. Politeknik Dergisi 23, sy. 1 (Mart 2020): 129-36. https://doi.org/10.2339/politeknik.523001.
EndNote Bölükdemir MH, Ekinci F (01 Mart 2020) Baş Plaka Fantomunda Kullanılan Biyomalzemelerde Oluşan İkinci Pikin Proton Bragg Pikine Etkisi. Politeknik Dergisi 23 1 129–136.
IEEE M. H. Bölükdemir ve F. Ekinci, “Baş Plaka Fantomunda Kullanılan Biyomalzemelerde Oluşan İkinci Pikin Proton Bragg Pikine Etkisi”, Politeknik Dergisi, c. 23, sy. 1, ss. 129–136, 2020, doi: 10.2339/politeknik.523001.
ISNAD Bölükdemir, Mustafa Hicabi - Ekinci, Fatih. “Baş Plaka Fantomunda Kullanılan Biyomalzemelerde Oluşan İkinci Pikin Proton Bragg Pikine Etkisi”. Politeknik Dergisi 23/1 (Mart 2020), 129-136. https://doi.org/10.2339/politeknik.523001.
JAMA Bölükdemir MH, Ekinci F. Baş Plaka Fantomunda Kullanılan Biyomalzemelerde Oluşan İkinci Pikin Proton Bragg Pikine Etkisi. Politeknik Dergisi. 2020;23:129–136.
MLA Bölükdemir, Mustafa Hicabi ve Fatih Ekinci. “Baş Plaka Fantomunda Kullanılan Biyomalzemelerde Oluşan İkinci Pikin Proton Bragg Pikine Etkisi”. Politeknik Dergisi, c. 23, sy. 1, 2020, ss. 129-36, doi:10.2339/politeknik.523001.
Vancouver Bölükdemir MH, Ekinci F. Baş Plaka Fantomunda Kullanılan Biyomalzemelerde Oluşan İkinci Pikin Proton Bragg Pikine Etkisi. Politeknik Dergisi. 2020;23(1):129-36.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.