In this study, InGaN/GaN structures are grown by using Metal Organic
Chemical Vapor Deposition (MOCVD) technique. Some structural, optical and morphological
properties of InGaN/GaN structures are investigated in detail. For structural
analysis, X-ray diffraction (XRD), for optical, Raman and morphological, Atomic
Force Microscopy (AFM) measurement techniques are used. In XRD analysis both
samples presented hexagonal crystal structure. XRD peaks for these two samples
showed small differences dependent on growth conditions. Strain and stress
values are determined from XRD and they are compared with Raman results. In
Raman analysis, five different chemicals are determined in both samples. Raman
analysis results are in good accordance with XRD, growth conditions and AFM
images. In AFM images, there can be seen hills and holes and they are partly
homogeneous. There are also some white regions in AFM images. According to
Raman peak center data, these white regions are detected as white rust.
[1] Huang, C.F., et al., Characterization of InGaN-based photovoltaic devices by varying the indium contents. Thin Solid Films, 2013. 529: p. 278-281.
[2] Neudeck, P.G., R.S. Okojie, and L.Y. Chen, High-temperature electronics - A role for wide bandgap semiconductors? Proceedings of the Ieee, 2002. 90(6): p. 1065-1076.
[3] Monemar, B., Paskov, P. P., Kasic, A., ―Optical properties of InN—the bandgap question‖, Supperlatt. Microstruct., 38 (2005) 38.
[4] Nanishi,Y., Saito, Y., Yamaguchi, T., ―RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys‖, Japan J. Appl. Phys., 42 (2003) 2549.
[5] Lee, S. N., Tan, S., Lee, W., Paek, H., Seon, M., Lee, I. H., Nam, O., Park, Y., “Characterization of optical and crystal qualities in InxGa1–xN/InyGa1–yN multi-quantum wells grown by MOCVD, J. Cryst. Growth, 250 (2003) 256.
[6] Lafont, U., Zeijl, H., Zwaag, S. (2012). Increasing the reliability of solid state lighting system via self-healing approaches, Microelectronic Reliability, 52(1), 71- 89.
[7] Akpinar, O., et al., On the elastic properties of INGAN/GAN LED structures. Applied Physics a-Materials Science & Processing, 2019. 125(2).
[8] Oura, K., Lifshitsi V. G., Saranin, A. A., Zotov, A. V., Katayama, M. (2003). Surface science (First edition). Berlin: Springer,166, 229, 378-382.
[9] Arulkumaran, S., Egawa, T., Ishikawa, H., and Jimbo, T.(2003). Characterization of different-Al-content AlxGa1-xN/GaN hetrostructures and high-electron-mobility transistors on sapphire, Journal of Vacuum Science & Technology, 21( 2), 888-894.
[10] Akasaki, I. and H. Amano, Breakthroughs in Improving Crystal Quality of GaN and Invention of the p-n Junction Blue-Light-Emitting Diode (vol 45, pg 9001, 2006). Japanese Journal of Applied Physics, 2008. 47(5): p. 3781-3781.
[11] O. Ambacher. (1998). Growth and applications of Group III-nitrides, Journal of Applied, 31(1), 2653–2710.
[12] Vickers, M. E., Kappers, M. J., Datta, R., McAleese, C., Smeeton, T. M., Rayment F. D. G., and Humphreys, C. J. (2005). In-plane imperfections in GaN studied by x-ray diffraction, Journal of Physics D: Applied Physics, 38(A10), A99-A104.
[13] Moram, M.A. and M.E. Vickers, X-ray diffraction of III-nitrides. Reports on Progress in Physics, 2009. 72(3).
[14] H. Yu, M. K. Ozturk, S. Ozcelik, E. Ozbay, J. Cryst. Growth 293, 273 (2006).
[15] Harutyunyan, V. S., Aivazyan, A. P., Weber, E. R., Kim, Y., Park, Y., Subramanya, S. G. (2001). High resolution x-ray diffraction strain-stress analysis of GaN/Sapphire heterostructures. Journal of Physics D: Applied Physics, 34(10A), A35-A39.
[16] Halliwell, M. A. G. (1997). X-ray diffraction solutions to heteroepitaxial growth problems. Journal of Crystal Growth, 170(1-4), 47-54.
[17] Xu, H.X., et al., Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical Review Letters, 1999. 83(21): p. 4357-4360.
[18] Heilig, K., Changes in Mean-Square Nuclear-Charge Radii from Optical Isotope Shifts of Long Chains of Isotopes. Hyperfine Interactions, 1985. 24(1-4): p. 349-375.
[19] Constable, C.P., et al., Raman microscopic studies of residual and applied stress in PVD hard ceramic coatings and correlation with X-ray diffraction (XRD) measurements. Surface & Coatings Technology, 2004. 184(2-3): p. 291-297.
[20] Yıldız, A., Öztürk, M.K., Bosi, M., Özçelik, S., Kasap, M. (2009). Structural, electrical and optical characterization of InGaN layers grown by MOVPE. Chinese Physics B, 18(9), 4007-4012.
[21] Dunn, C. G., Kogh, E. F. (1957). Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe. Acta Metallurgica, 5(10), 548-554.
[22] Tao, T., Zhao, Z., Lian, L., Hui, S., Zili, X., Rong, Z., Bin., L., Xiangqian, X., Yi, Li., Ping, H., Yi, S., and Youdou, Z. (2011). Surface morphology and composition studies in InGaN/GaN film grown by MOCVD, Journal of Semiconductors, 32(8), 1-3.
[23] Çörekçi S., Öztürk, M. K., Akaoğlu, B., Çakmak, M., Özçelik, S., Özbay, E. (2007). Structural, morphological, and optical properties of AlGaN/GaN heterostructures with AlN buffer and interlayer, Journal of Applied Physics. 101(12), 3502.
In this study, InGaN/GaN structures are grown by using Metal Organic
Chemical Vapor Deposition (MOCVD) technique. Some structural, optical and morphological
properties of InGaN/GaN structures are investigated in detail. For structural
analysis, X-ray diffraction (XRD), for optical, Raman and morphological, Atomic
Force Microscopy (AFM) measurement techniques are used. In XRD analysis both
samples presented hexagonal crystal structure. XRD peaks for these two samples
showed small differences dependent on growth conditions. Strain and stress
values are determined from XRD and they are compared with Raman results. In
Raman analysis, five different chemicals are determined in both samples. Raman
analysis results are in good accordance with XRD, growth conditions and AFM
images. In AFM images, there can be seen hills and holes and they are partly
homogeneous. There are also some white regions in AFM images. According to
Raman peak center data, these white regions are detected as white rust.
[1] Huang, C.F., et al., Characterization of InGaN-based photovoltaic devices by varying the indium contents. Thin Solid Films, 2013. 529: p. 278-281.
[2] Neudeck, P.G., R.S. Okojie, and L.Y. Chen, High-temperature electronics - A role for wide bandgap semiconductors? Proceedings of the Ieee, 2002. 90(6): p. 1065-1076.
[3] Monemar, B., Paskov, P. P., Kasic, A., ―Optical properties of InN—the bandgap question‖, Supperlatt. Microstruct., 38 (2005) 38.
[4] Nanishi,Y., Saito, Y., Yamaguchi, T., ―RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys‖, Japan J. Appl. Phys., 42 (2003) 2549.
[5] Lee, S. N., Tan, S., Lee, W., Paek, H., Seon, M., Lee, I. H., Nam, O., Park, Y., “Characterization of optical and crystal qualities in InxGa1–xN/InyGa1–yN multi-quantum wells grown by MOCVD, J. Cryst. Growth, 250 (2003) 256.
[6] Lafont, U., Zeijl, H., Zwaag, S. (2012). Increasing the reliability of solid state lighting system via self-healing approaches, Microelectronic Reliability, 52(1), 71- 89.
[7] Akpinar, O., et al., On the elastic properties of INGAN/GAN LED structures. Applied Physics a-Materials Science & Processing, 2019. 125(2).
[8] Oura, K., Lifshitsi V. G., Saranin, A. A., Zotov, A. V., Katayama, M. (2003). Surface science (First edition). Berlin: Springer,166, 229, 378-382.
[9] Arulkumaran, S., Egawa, T., Ishikawa, H., and Jimbo, T.(2003). Characterization of different-Al-content AlxGa1-xN/GaN hetrostructures and high-electron-mobility transistors on sapphire, Journal of Vacuum Science & Technology, 21( 2), 888-894.
[10] Akasaki, I. and H. Amano, Breakthroughs in Improving Crystal Quality of GaN and Invention of the p-n Junction Blue-Light-Emitting Diode (vol 45, pg 9001, 2006). Japanese Journal of Applied Physics, 2008. 47(5): p. 3781-3781.
[11] O. Ambacher. (1998). Growth and applications of Group III-nitrides, Journal of Applied, 31(1), 2653–2710.
[12] Vickers, M. E., Kappers, M. J., Datta, R., McAleese, C., Smeeton, T. M., Rayment F. D. G., and Humphreys, C. J. (2005). In-plane imperfections in GaN studied by x-ray diffraction, Journal of Physics D: Applied Physics, 38(A10), A99-A104.
[13] Moram, M.A. and M.E. Vickers, X-ray diffraction of III-nitrides. Reports on Progress in Physics, 2009. 72(3).
[14] H. Yu, M. K. Ozturk, S. Ozcelik, E. Ozbay, J. Cryst. Growth 293, 273 (2006).
[15] Harutyunyan, V. S., Aivazyan, A. P., Weber, E. R., Kim, Y., Park, Y., Subramanya, S. G. (2001). High resolution x-ray diffraction strain-stress analysis of GaN/Sapphire heterostructures. Journal of Physics D: Applied Physics, 34(10A), A35-A39.
[16] Halliwell, M. A. G. (1997). X-ray diffraction solutions to heteroepitaxial growth problems. Journal of Crystal Growth, 170(1-4), 47-54.
[17] Xu, H.X., et al., Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical Review Letters, 1999. 83(21): p. 4357-4360.
[18] Heilig, K., Changes in Mean-Square Nuclear-Charge Radii from Optical Isotope Shifts of Long Chains of Isotopes. Hyperfine Interactions, 1985. 24(1-4): p. 349-375.
[19] Constable, C.P., et al., Raman microscopic studies of residual and applied stress in PVD hard ceramic coatings and correlation with X-ray diffraction (XRD) measurements. Surface & Coatings Technology, 2004. 184(2-3): p. 291-297.
[20] Yıldız, A., Öztürk, M.K., Bosi, M., Özçelik, S., Kasap, M. (2009). Structural, electrical and optical characterization of InGaN layers grown by MOVPE. Chinese Physics B, 18(9), 4007-4012.
[21] Dunn, C. G., Kogh, E. F. (1957). Comparison of dislocation densities of primary and secondary recrystallization grains of Si-Fe. Acta Metallurgica, 5(10), 548-554.
[22] Tao, T., Zhao, Z., Lian, L., Hui, S., Zili, X., Rong, Z., Bin., L., Xiangqian, X., Yi, Li., Ping, H., Yi, S., and Youdou, Z. (2011). Surface morphology and composition studies in InGaN/GaN film grown by MOCVD, Journal of Semiconductors, 32(8), 1-3.
[23] Çörekçi S., Öztürk, M. K., Akaoğlu, B., Çakmak, M., Özçelik, S., Özbay, E. (2007). Structural, morphological, and optical properties of AlGaN/GaN heterostructures with AlN buffer and interlayer, Journal of Applied Physics. 101(12), 3502.
Bilgili, A. K., Akpınar, Ö., Öztürk, M. K., Özçelik, S., vd. (2020). XRD vs Raman for InGaN/GaN Structures. Politeknik Dergisi, 23(2), 291-296. https://doi.org/10.2339/politeknik.537733
AMA
Bilgili AK, Akpınar Ö, Öztürk MK, Özçelik S, Özbay E. XRD vs Raman for InGaN/GaN Structures. Politeknik Dergisi. Haziran 2020;23(2):291-296. doi:10.2339/politeknik.537733
Chicago
Bilgili, Ahmet Kürşat, Ömer Akpınar, Mustafa Kemal Öztürk, Süleyman Özçelik, ve Ekmel Özbay. “XRD Vs Raman for InGaN/GaN Structures”. Politeknik Dergisi 23, sy. 2 (Haziran 2020): 291-96. https://doi.org/10.2339/politeknik.537733.
EndNote
Bilgili AK, Akpınar Ö, Öztürk MK, Özçelik S, Özbay E (01 Haziran 2020) XRD vs Raman for InGaN/GaN Structures. Politeknik Dergisi 23 2 291–296.
IEEE
A. K. Bilgili, Ö. Akpınar, M. K. Öztürk, S. Özçelik, ve E. Özbay, “XRD vs Raman for InGaN/GaN Structures”, Politeknik Dergisi, c. 23, sy. 2, ss. 291–296, 2020, doi: 10.2339/politeknik.537733.
ISNAD
Bilgili, Ahmet Kürşat vd. “XRD Vs Raman for InGaN/GaN Structures”. Politeknik Dergisi 23/2 (Haziran 2020), 291-296. https://doi.org/10.2339/politeknik.537733.
JAMA
Bilgili AK, Akpınar Ö, Öztürk MK, Özçelik S, Özbay E. XRD vs Raman for InGaN/GaN Structures. Politeknik Dergisi. 2020;23:291–296.
MLA
Bilgili, Ahmet Kürşat vd. “XRD Vs Raman for InGaN/GaN Structures”. Politeknik Dergisi, c. 23, sy. 2, 2020, ss. 291-6, doi:10.2339/politeknik.537733.
Vancouver
Bilgili AK, Akpınar Ö, Öztürk MK, Özçelik S, Özbay E. XRD vs Raman for InGaN/GaN Structures. Politeknik Dergisi. 2020;23(2):291-6.