Araştırma Makalesi
BibTex RIS Kaynak Göster

The Determination of the Thermal Characteristics of the Microchannel Heat Exchangers for Single-Phase R600a Flow

Yıl 2021, Cilt: 24 Sayı: 3, 797 - 810, 01.09.2021
https://doi.org/10.2339/politeknik.719887

Öz

In this study, the mathematical modeling of microchannel heat exchangers (MCHEs) has been experimentally examined for applications where there is a single-phase refrigerant flow such as pre-heating/cooling, superheating/subcooling. A mathematical simulation model has been developed for louvered fin MCHEs where the working fluid is R600a, which estimates the outlet temperature, total heat transfer capacity and entropy generation of the R600a. To imrpove the accuracy of the model, different mass velocities in the passes and uniform air velocities at the face of MCHE have been taken into consideration in the proposed model. Different from other models in the literature, a calculation system created by two discretization level has been applied to take into account these effects. Non-uniform air velocities have been taken into consideration via dividing the face of the MCHE into airflow regions in the model. Experimental study has been performed to validate the model results. It concluded that the model predicts the outlet temperature with an average absolute deviation within ±10% for all investigated test conditions. It is found that the taking into consideration non-uniform air velocity improves accuracy of the model. The entropy generation mechanisms in the MCHE have been investigated and it has been determined that the contribution of the fluid flow irreversibility to entropy generation is quite low compared to heat transfer irreversibility.

Kaynakça

  • [1] Kandlikar S.G., “A roadmap for implementing minichannels in refrigeration and air-conditioning systems - Current status and future directions”, Heat Transfer Engineering, 28: 973–985, (2007).
  • [2] Roth K., Westphalen D., Dieckmann J., Hamilton S., Goetzler W., Energy consumption characteristics of commercial building HVAC systems, Volume III: Energy savings potential,III, (2002).
  • [3] Zhai R., Yang Z., Zhang Y., Lv Z., Feng B., “Effect of temperature and humidity on the flammability limits of hydrocarbons”, Fuel, 270: 117442, (2020).
  • [4] Ahmadpour M.M., Akhavan-Behabadi M.A., Sajadi B., Salehi-Kohestani A., “Experimental Study of Lubricating Oil Effect on R600a Condensation inside Micro-Fin Tubes”, Heat Transfer Engineering, 1–13, (2020).
  • [5] Vera-García F., García-Cascales J.R., Gonzálvez-Maciá J., Cabello R., Llopis R., Sanchez D., Torella E., “A simplified model for shell-and-tubes heat exchangers: Practical application”, Applied Thermal Engineering, 30: 1231–141, (2010).
  • [6] Shao L.L., Yang L., Zhang C.L., Gu B., “Numerical modeling of serpentine microchannel condensers”, International Journal of Refrigeration, 32: 1162–172, (2009).
  • [7] Martinez-Ballester S., Corberan J.M., Gonzalvez-Macia J., “Numerical model for microchannel condensers and gas coolers: Part i - Model description and validation”, International Journal of Refrigeration, 36: 173–190, (2013).
  • [8] Kim M.H., Bullard C.W., “Development of a microchannel evaporator model for a CO2air-conditioning system”, Energy, 26: 931–948, (2001).
  • [9] Yin J.M., Bullard C.W., Hrnjak P.S., “R-744 gas cooler model development and validation”, International Journal of Refrigeration, 24: 692–701, (2001).
  • [10] Shojaeefard M.H., Zare J., “Modeling and combined application of the modified NSGA-II and TOPSIS to optimize a refrigerant-to-air multi-pass louvered fin-and-flat tube condenser”, Applied Thermal Engineering, 103: 212–225, (2016).
  • [11] García-Cascales J.R., Vera-García F., Gonzálvez-Maciá J., Corberán-Salvador J.M., Johnson M.W., Kohler G.T., “Compact heat exchangers modeling: Condensation”, International Journal of Refrigeration, 33: 135–147, (2010).
  • [12] Liang Y.Y., Liu C.C., Li C.Z., Chen J.P., “Experimental and simulation study on the air side thermal hydraulic performance of automotive heat exchangers”, Applied Thermal Engineering, 87: 305–315, (2015).
  • [13] Yin X.W., Wang W., Patnaik V., Zhou J.S., Huang X.C., “Evaluation of microchannel condenser characteristics by numerical simulation”, International Journal of Refrigeration, 54: 126–141, (2015).
  • [14] Dittus F.W., Boelter L.M.., “Heat transfer in automobile radiators of the tubular type”, Publications in Engineering, University of California, Berkeley, 2: 443, (1930).
  • [15] Gnielinski V., “New equations for heat and mass transfer in turbulent pipe and channel flow”, International Chemical Engineering, 16: 359–368, (1976).
  • [16] Petukhov B.S., “Heat transfer and friction in turbulent pipe flow with variable physical properties”, Advances in Heat Transfer, 6: 503–564, (1970).
  • [17] Derby M., Lee H.J., Peles Y., Jensen M.K., “Condensation heat transfer in square, triangular, and semi-circular mini-channels”, International Journal of Heat and Mass Transfer, 55: 187–197, (2012). doi:10.1016/j.ijheatmasstransfer.2011.09.002.
  • [18] Saha S.K., “Microchannel Phase Change Transport Phenomena”, Oxford: UK: Butterworth-Heinemann; (2016).
  • [19] Filonenko G.K., “Hydraulic resistance in pipes", Heat Exchanger Design Handbook, Teploenergetica, 1: 40–44, (1954).
  • [20] Adams T.M., Jeter S.M., Qureshis Z.H., “An experimental investigation of single-phase forced convection in microchannels”, International Journal of Heat and Mass Transfer, 41: 851–857, (1997).
  • [21] Chang Y.-J., Wang C.-C., “A generalized heat transfer correlation for Iouver fin geometry”, International Journal of Heat and Mass Transfer, 40: 533–544, (1997).
  • [22] Kim M., Bullard C.W., “Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers”, International Journal of Refrigeration, 25: 390–400, (2002).
  • [23] Kotas T.J., “The Exergy Method of Thermal Plant Analysis”, UK:Essex: Butterworth-Heinemann; 1985.
  • [24] Awad M.M., “A review of entropy generation in microchannels”, Advances in Mechanical Engineering, 7: 1-32. (2015).
  • [25] Bejan A., “Entropy generation through heat and fluid flow”, New York: USA: Wiley; (1982).

Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi

Yıl 2021, Cilt: 24 Sayı: 3, 797 - 810, 01.09.2021
https://doi.org/10.2339/politeknik.719887

Öz

Bu çalışmada, özellikle iklimlendirme sistemlerinde ön ısıtma/soğutma, aşırı kızdırma/soğutma gibi tek fazlı soğutkan akışının olduğu uygulamalar için mikrokanal eşanjörlerin matematiksel modellemesi deneysel doğrulamalı olarak ele alınmıştır. Çalışma akışkanının R600a olduğu panjurlu kanatlı mikrokanal eşanjörler için R600a’nın çıkış sıcaklığını, toplam ısı transfer kapasitesini ve entropi üretimini tahmin eden bir matematiksel benzetim modeli geliştirilmiştir. Modelin doğruluk hassasiyetini arttırmak için geçişlerdeki farklı kütle hızları ve uniform olmayan hava hızı modelde dikkate alınmıştır. Bu etkileri dikkate almak için literatürde yer alan diğer modellerden farklı olarak iki seviye ayrıklaştırma ile oluşturulan bir hesaplama sistemi modelde uygulanmıştır. Modelde mikrokanal ısı eşanjörünün ön yüzü hava akış bölgelerine bölünerek uniform olmayan hava hızları dikkate alınmıştır. Model sonuçlarını doğrulamak için deneysel çalışma yapılmıştır. Deneysel doğrulama sonucunda modelin, incelenen tüm test koşulları için çıkış sıcaklığını ±%10 aralığında bir ortalama mutlak sapma ile öngördüğü sonucuna varılmıştır. Mikrokanal ısı eşanjörünün, ısı transfer performansını tahmin etme kabiliyeti, deneylerle değerlendirilmiş, uniform olmayan hava hızının modele dahil etmenin, modelin doğruluk hassasiyetini arttırdığı görülmüştür. Mikrokanal ısı eşanjöründeki entropi üretim mekanizmaları incelenmiş ve akışkan akımı tersinmezliklerinin entropi oluşumuna katkısının, ısı transfer tersinmezliklerine kıyasla oldukça düşük olduğu tespit edilmiştir.  

Kaynakça

  • [1] Kandlikar S.G., “A roadmap for implementing minichannels in refrigeration and air-conditioning systems - Current status and future directions”, Heat Transfer Engineering, 28: 973–985, (2007).
  • [2] Roth K., Westphalen D., Dieckmann J., Hamilton S., Goetzler W., Energy consumption characteristics of commercial building HVAC systems, Volume III: Energy savings potential,III, (2002).
  • [3] Zhai R., Yang Z., Zhang Y., Lv Z., Feng B., “Effect of temperature and humidity on the flammability limits of hydrocarbons”, Fuel, 270: 117442, (2020).
  • [4] Ahmadpour M.M., Akhavan-Behabadi M.A., Sajadi B., Salehi-Kohestani A., “Experimental Study of Lubricating Oil Effect on R600a Condensation inside Micro-Fin Tubes”, Heat Transfer Engineering, 1–13, (2020).
  • [5] Vera-García F., García-Cascales J.R., Gonzálvez-Maciá J., Cabello R., Llopis R., Sanchez D., Torella E., “A simplified model for shell-and-tubes heat exchangers: Practical application”, Applied Thermal Engineering, 30: 1231–141, (2010).
  • [6] Shao L.L., Yang L., Zhang C.L., Gu B., “Numerical modeling of serpentine microchannel condensers”, International Journal of Refrigeration, 32: 1162–172, (2009).
  • [7] Martinez-Ballester S., Corberan J.M., Gonzalvez-Macia J., “Numerical model for microchannel condensers and gas coolers: Part i - Model description and validation”, International Journal of Refrigeration, 36: 173–190, (2013).
  • [8] Kim M.H., Bullard C.W., “Development of a microchannel evaporator model for a CO2air-conditioning system”, Energy, 26: 931–948, (2001).
  • [9] Yin J.M., Bullard C.W., Hrnjak P.S., “R-744 gas cooler model development and validation”, International Journal of Refrigeration, 24: 692–701, (2001).
  • [10] Shojaeefard M.H., Zare J., “Modeling and combined application of the modified NSGA-II and TOPSIS to optimize a refrigerant-to-air multi-pass louvered fin-and-flat tube condenser”, Applied Thermal Engineering, 103: 212–225, (2016).
  • [11] García-Cascales J.R., Vera-García F., Gonzálvez-Maciá J., Corberán-Salvador J.M., Johnson M.W., Kohler G.T., “Compact heat exchangers modeling: Condensation”, International Journal of Refrigeration, 33: 135–147, (2010).
  • [12] Liang Y.Y., Liu C.C., Li C.Z., Chen J.P., “Experimental and simulation study on the air side thermal hydraulic performance of automotive heat exchangers”, Applied Thermal Engineering, 87: 305–315, (2015).
  • [13] Yin X.W., Wang W., Patnaik V., Zhou J.S., Huang X.C., “Evaluation of microchannel condenser characteristics by numerical simulation”, International Journal of Refrigeration, 54: 126–141, (2015).
  • [14] Dittus F.W., Boelter L.M.., “Heat transfer in automobile radiators of the tubular type”, Publications in Engineering, University of California, Berkeley, 2: 443, (1930).
  • [15] Gnielinski V., “New equations for heat and mass transfer in turbulent pipe and channel flow”, International Chemical Engineering, 16: 359–368, (1976).
  • [16] Petukhov B.S., “Heat transfer and friction in turbulent pipe flow with variable physical properties”, Advances in Heat Transfer, 6: 503–564, (1970).
  • [17] Derby M., Lee H.J., Peles Y., Jensen M.K., “Condensation heat transfer in square, triangular, and semi-circular mini-channels”, International Journal of Heat and Mass Transfer, 55: 187–197, (2012). doi:10.1016/j.ijheatmasstransfer.2011.09.002.
  • [18] Saha S.K., “Microchannel Phase Change Transport Phenomena”, Oxford: UK: Butterworth-Heinemann; (2016).
  • [19] Filonenko G.K., “Hydraulic resistance in pipes", Heat Exchanger Design Handbook, Teploenergetica, 1: 40–44, (1954).
  • [20] Adams T.M., Jeter S.M., Qureshis Z.H., “An experimental investigation of single-phase forced convection in microchannels”, International Journal of Heat and Mass Transfer, 41: 851–857, (1997).
  • [21] Chang Y.-J., Wang C.-C., “A generalized heat transfer correlation for Iouver fin geometry”, International Journal of Heat and Mass Transfer, 40: 533–544, (1997).
  • [22] Kim M., Bullard C.W., “Air-side thermal hydraulic performance of multi-louvered fin aluminum heat exchangers”, International Journal of Refrigeration, 25: 390–400, (2002).
  • [23] Kotas T.J., “The Exergy Method of Thermal Plant Analysis”, UK:Essex: Butterworth-Heinemann; 1985.
  • [24] Awad M.M., “A review of entropy generation in microchannels”, Advances in Mechanical Engineering, 7: 1-32. (2015).
  • [25] Bejan A., “Entropy generation through heat and fluid flow”, New York: USA: Wiley; (1982).
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Anıl Başaran 0000-0003-0651-1453

Ali Yurddaş 0000-0002-4683-142X

Yayımlanma Tarihi 1 Eylül 2021
Gönderilme Tarihi 13 Nisan 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 24 Sayı: 3

Kaynak Göster

APA Başaran, A., & Yurddaş, A. (2021). Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi. Politeknik Dergisi, 24(3), 797-810. https://doi.org/10.2339/politeknik.719887
AMA Başaran A, Yurddaş A. Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi. Politeknik Dergisi. Eylül 2021;24(3):797-810. doi:10.2339/politeknik.719887
Chicago Başaran, Anıl, ve Ali Yurddaş. “Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi”. Politeknik Dergisi 24, sy. 3 (Eylül 2021): 797-810. https://doi.org/10.2339/politeknik.719887.
EndNote Başaran A, Yurddaş A (01 Eylül 2021) Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi. Politeknik Dergisi 24 3 797–810.
IEEE A. Başaran ve A. Yurddaş, “Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi”, Politeknik Dergisi, c. 24, sy. 3, ss. 797–810, 2021, doi: 10.2339/politeknik.719887.
ISNAD Başaran, Anıl - Yurddaş, Ali. “Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi”. Politeknik Dergisi 24/3 (Eylül 2021), 797-810. https://doi.org/10.2339/politeknik.719887.
JAMA Başaran A, Yurddaş A. Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi. Politeknik Dergisi. 2021;24:797–810.
MLA Başaran, Anıl ve Ali Yurddaş. “Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi”. Politeknik Dergisi, c. 24, sy. 3, 2021, ss. 797-10, doi:10.2339/politeknik.719887.
Vancouver Başaran A, Yurddaş A. Tek Fazlı R600a Soğutkan Akışı İçin Mikrokanal Eşanjörün Matematiksel Modellemesi. Politeknik Dergisi. 2021;24(3):797-810.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.