Bu çalışmada, metal organic kimyasal buhar biriktirme(MOCVD) yöntemiyle büyütülen InGaN/GaN/Al2O3 yapısının yapısal ve morfolojik özellikleri incelendi. GaN’ın kristal boyutu X-ışını kırınımı (XRD) tekniği ile belirlendi. Raman spektrumu kullanılarak kalibrasyon katsayısı belirlendi. Kalibrasyon katsayısı ve termoelektrik figure (ZT) yapıdaki GaN’a ait yığın sayısını tahmin etmek için kullanıldı. Yığın sayısı (N) yapısal bir özelliktir ve onu kullanarak optik bir özellik olan soğurma katsayısı belirlendi. Atomik kuvvet mikroskobisi (AFM) ve tarama elektron mikroskobisi (SEM) kullanılarak numunenin toplam kalınlığı tam olarak belirlendi ve birbiri ile kıyaslandı. Bu çalışmada kullanılan numune sadece bir örnek teşkil eder. Eğer doğru katsayılar bulunabilirse farklı yapılara da uyarlanabilir. Bu çalışmanın önemi, farklı numunelerin optik, yapısal ve morfolojik özelliklerini belirleyebilmek için anahtar rolü oynamasıdır.
Makalemizi derginize gönderme fırsatı sunduğunuz için teşekkür ederiz.
Kaynakça
[1] H. Morkoç., “Handbook of Nitride Semiconductors and Devices”, Wiley- VCH, Berlin, Vols. I–III, (2008).
[2] E. J. Martinez., “Gallium Nitride & Related Wide Bandgap Materials and Devices”, DARPATech, (2000).
[3] R. Davis., A. Roskowski., E. Preble., J. Speck., B. Heying., J. Freitas., E. Glaser., W. Carlos., “Gallium Nitride Materials”, Proc. IEEE 90, 993, (2004).
[4] N. Nakamura., “Epitaxy for III-N-Based Electronic Devices”, MRS Bulletin, Warrendale, pp. 1145–1156, (1998).
[5] S. Keller., Y. Wu., G. Parish., N. Ziang., J. Xu., B. Keller., S. DenBaars., U. Mishra., “Gallium nitrite based high power heterojunction field effect transistors: process development and present status at UCSB‖”, IEEE Trans. Electron Devices 48, 552, (2001).
[6] C. Türkmen., “Growth and characterisation of CdS, ZnS, PbS Nano structures by MOCVD”, PhD Thesis number: 184045, Osmangazi University, Eskişehir, (2006).
[7] E. Erdoğan., “Growth of InXGa1-XN ternary compound as thin film by RF magnetron sputtering technique and investigation of characteristic properties with experimental analysis”, Phd Thesis number:483620, Atatürk University,Graduate School of Naturel and Applied Sciences, Department of Nanoscience and Nanoengineering,Department of Nanomaterials, Erzurum, (2017).
[8] H. Harima., “Properties of GaN and related compounds studied by means of Raman scattering”, Journal of Physics: Condensed Matter, (2002).
[9] E. Smith., G. Dent., “Modern Raman Spectroscopy, A Practical Approach”, DOI:10.1002/0470011831, (2004).
[10] D. A. Skoog., F. J. Holler., S. R. Crouch., “Principles of Instrumental Analysis” 6th Edition, ISBN-13: 978-0495012016, ISBN-10: 049501, (2017).
[11] Klug and Alexander., “XRD Characterization of Crystallinity of Human Tooth Enamel under Influence of Mechanical Grinding”, Materials Sciences and Applications, (2015).
[12] A. Drabin’ska., J. Borysiuk., W. Strupin’ski., and J. M. Baranowski., “Multilayer graphene stacks grown by different methods-thickness measurements by X-ray diffraction, Raman spectroscopy and optical transmission”, Mater. Sci. Forum 645–648, 615, (2010).
[13] A. Drabin' ska., K. Grodecki., W. Strupin' ski., “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption”, Phys. Rev. B, 81, 245410, (2010).
[14] İ. K. Durukan., "Microstructural Analysis with Graded and Non-Graded Indium in InGaN Solar Cell", Journal of nano electronics and opto-electronics, vol.12, pp.109-117, (2017).
[15] S. Tanaka and T. Karumi., "SEM observation and analysis of InGaN/GaN multiple quantum well structure using obliquely polished sample," in Microscopy, vol. 66, no. 2, pp. 131-135, April (2017), doi: 10.1093/jmicro/dfw101..
[16] G.F. Yang., Q. Zhang., J. Wang., Y.N. Lu., P. Chen., Z.L. Wu., S.M. Gao., G.Q. Chen., “InGaN/GaN multiple quantum wells on selectively grown GaN microfacets and the applications for phosphor-free white light-emitting diodes”, Reviews in Physics, Volume 1, 2016, Pages 101-119,ISSN2405-4283, (2016).
A Different Approach to Absorption Coefficient and Thickness
In this study structural and morphological properties of InGaN/GaN/Al2O3 structure, grown by Metal Organic Chemical Vapor Deposition (MOCVD) technique, is investigated. Crystal size of GaN in the structure is determined by using X-Ray Diffraction (XRD) techique. By the help of Raman spectra calibration coefficient is gained. This calibration coefficient and Termoelectric figure (ZT) of GaN is used to estimate number of stacks of GaN in the structure. Number of stacks (N) is a structural property and by using it an optical property, absorption coefficient, is determined. Using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) images total thickness of the sample is determined accurately and they are compared with each other. The sample used in this study is only for an example. The methods used in this study can be applied to different structures if right coefficients can be found. The importance of this study is that it plays a key role for determining structural, optical and morphological features of different samples.
[1] H. Morkoç., “Handbook of Nitride Semiconductors and Devices”, Wiley- VCH, Berlin, Vols. I–III, (2008).
[2] E. J. Martinez., “Gallium Nitride & Related Wide Bandgap Materials and Devices”, DARPATech, (2000).
[3] R. Davis., A. Roskowski., E. Preble., J. Speck., B. Heying., J. Freitas., E. Glaser., W. Carlos., “Gallium Nitride Materials”, Proc. IEEE 90, 993, (2004).
[4] N. Nakamura., “Epitaxy for III-N-Based Electronic Devices”, MRS Bulletin, Warrendale, pp. 1145–1156, (1998).
[5] S. Keller., Y. Wu., G. Parish., N. Ziang., J. Xu., B. Keller., S. DenBaars., U. Mishra., “Gallium nitrite based high power heterojunction field effect transistors: process development and present status at UCSB‖”, IEEE Trans. Electron Devices 48, 552, (2001).
[6] C. Türkmen., “Growth and characterisation of CdS, ZnS, PbS Nano structures by MOCVD”, PhD Thesis number: 184045, Osmangazi University, Eskişehir, (2006).
[7] E. Erdoğan., “Growth of InXGa1-XN ternary compound as thin film by RF magnetron sputtering technique and investigation of characteristic properties with experimental analysis”, Phd Thesis number:483620, Atatürk University,Graduate School of Naturel and Applied Sciences, Department of Nanoscience and Nanoengineering,Department of Nanomaterials, Erzurum, (2017).
[8] H. Harima., “Properties of GaN and related compounds studied by means of Raman scattering”, Journal of Physics: Condensed Matter, (2002).
[9] E. Smith., G. Dent., “Modern Raman Spectroscopy, A Practical Approach”, DOI:10.1002/0470011831, (2004).
[10] D. A. Skoog., F. J. Holler., S. R. Crouch., “Principles of Instrumental Analysis” 6th Edition, ISBN-13: 978-0495012016, ISBN-10: 049501, (2017).
[11] Klug and Alexander., “XRD Characterization of Crystallinity of Human Tooth Enamel under Influence of Mechanical Grinding”, Materials Sciences and Applications, (2015).
[12] A. Drabin’ska., J. Borysiuk., W. Strupin’ski., and J. M. Baranowski., “Multilayer graphene stacks grown by different methods-thickness measurements by X-ray diffraction, Raman spectroscopy and optical transmission”, Mater. Sci. Forum 645–648, 615, (2010).
[13] A. Drabin' ska., K. Grodecki., W. Strupin' ski., “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption”, Phys. Rev. B, 81, 245410, (2010).
[14] İ. K. Durukan., "Microstructural Analysis with Graded and Non-Graded Indium in InGaN Solar Cell", Journal of nano electronics and opto-electronics, vol.12, pp.109-117, (2017).
[15] S. Tanaka and T. Karumi., "SEM observation and analysis of InGaN/GaN multiple quantum well structure using obliquely polished sample," in Microscopy, vol. 66, no. 2, pp. 131-135, April (2017), doi: 10.1093/jmicro/dfw101..
[16] G.F. Yang., Q. Zhang., J. Wang., Y.N. Lu., P. Chen., Z.L. Wu., S.M. Gao., G.Q. Chen., “InGaN/GaN multiple quantum wells on selectively grown GaN microfacets and the applications for phosphor-free white light-emitting diodes”, Reviews in Physics, Volume 1, 2016, Pages 101-119,ISSN2405-4283, (2016).
Bılgılı, A. K., Akpınar, Ö., Özçelik, S., Ozturk, M. (2022). A Different Approach to Absorption Coefficient and Thickness. Politeknik Dergisi, 25(2), 643-646. https://doi.org/10.2339/politeknik.759480
AMA
Bılgılı AK, Akpınar Ö, Özçelik S, Ozturk M. A Different Approach to Absorption Coefficient and Thickness. Politeknik Dergisi. Haziran 2022;25(2):643-646. doi:10.2339/politeknik.759480
Chicago
Bılgılı, Ahmet Kursat, Ömer Akpınar, Süleyman Özçelik, ve Mustafa Ozturk. “A Different Approach to Absorption Coefficient and Thickness”. Politeknik Dergisi 25, sy. 2 (Haziran 2022): 643-46. https://doi.org/10.2339/politeknik.759480.
EndNote
Bılgılı AK, Akpınar Ö, Özçelik S, Ozturk M (01 Haziran 2022) A Different Approach to Absorption Coefficient and Thickness. Politeknik Dergisi 25 2 643–646.
IEEE
A. K. Bılgılı, Ö. Akpınar, S. Özçelik, ve M. Ozturk, “A Different Approach to Absorption Coefficient and Thickness”, Politeknik Dergisi, c. 25, sy. 2, ss. 643–646, 2022, doi: 10.2339/politeknik.759480.
ISNAD
Bılgılı, Ahmet Kursat vd. “A Different Approach to Absorption Coefficient and Thickness”. Politeknik Dergisi 25/2 (Haziran 2022), 643-646. https://doi.org/10.2339/politeknik.759480.
JAMA
Bılgılı AK, Akpınar Ö, Özçelik S, Ozturk M. A Different Approach to Absorption Coefficient and Thickness. Politeknik Dergisi. 2022;25:643–646.
MLA
Bılgılı, Ahmet Kursat vd. “A Different Approach to Absorption Coefficient and Thickness”. Politeknik Dergisi, c. 25, sy. 2, 2022, ss. 643-6, doi:10.2339/politeknik.759480.
Vancouver
Bılgılı AK, Akpınar Ö, Özçelik S, Ozturk M. A Different Approach to Absorption Coefficient and Thickness. Politeknik Dergisi. 2022;25(2):643-6.