Araştırma Makalesi
BibTex RIS Kaynak Göster

Al – Zn – Mg – Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi

Yıl 2022, Cilt: 25 Sayı: 2, 871 - 877, 01.06.2022
https://doi.org/10.2339/politeknik.919492

Öz

Dayanıklılığın, yani mukavemetin ağırlık oranının birincil gereklilik olduğu yapısal uygulamalarda demir esaslı malzemelerin benzer özelliklere sahip malzemelerle yer değiştirmesi gerekir. Isıl işlem görebilir 7075 alüminyum alaşımı, dayanımının çeliklerinkiyle karşılaştırılabilir olması ve otomobil, uçak endüstrisi ile denizcilik uygulamalarında yaygın olarak kullanılması nedeniyle araştırmacıların ortak ilgi alanına giren alüminyum alaşımlarından biri olarak kabul edilir. Yüksek sertlik ve mukavemetinin yanında hafifliği ile savunma endüstrisinin en önemli alaşımlarından biridir. Bu çalışmada ticari olarak satın alınan T651 ısıl işlemi uygulanmış Al – Zn – Mg– Cu alaşımının yeniden çözeltiye alma (retrogresyon) ve farklı yeniden yaşlandırma (re-aging) (RRA) sürelerine bağlı ısıl işlemleri sırasında meydana gelen değişimler, sistematik olarak değerlendirildi. Bu ısıl işlem döngüsü RRA ısıl işleminin ilk basamağı olan yeniden çözeltiye alma (retrogression) işleminde numuneler 200 °C sıcaklıkta 10 dakika sürelerde bekletilerek hemen oda sıcaklığındaki suda soğutulup ardından argon atmosferi korumalı fırında 120 °C sıcaklıkta sırasıyla 2-4-8-16-24-32 saat yeniden yaşlandırma (re-aging) işlemi uygulanmaları ile tamamlanmıştır. Numunelerin makro sertlik ölçümü (HV1) ve SEM mikroyapı incelemeleri yapılmıştır. EDS ve maping analizleri yapılarak elementel dağılımlar gözlemlenmiştir. X-RD analizleri yapılarak düzlemler arası mesafe ve ısıl işlem süresine göre mikro gerinim değerleri hesaplanmıştır. Çökeltilerin yeniden yaşlandırma süresi arttıkça dağılımları da artmıştır. Yapılan çalışma sonucuna göre en yüksek sertlik değeri 24 saat RRA ısıl işlem yapılan ve en yüksek mikro gerinim 8 saat RRA yapılan malzemede görülmüştür.

Destekleyen Kurum

GAZİ ÜNİVERSİTESİ

Proje Numarası

07/2019-15

Teşekkür

Bu çalışma 07/2019-15 numaralı proje kapsamında Gazi Üniversitesi Bilimsel Araştırma Projesi tarafından desteklenmektedir.

Kaynakça

  • [1] Vikas, P., Sudhakar, I., MohanaRao, G., & Srinivas, B. Aging behaviour of hot deformed AA7075 aluminium alloy. Materials Today: Proceedings. 41: 1013-1017, (2021).
  • [2] Reda, Y., Abdel-Karim, R., & Elmahallawi, I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging. Materials Science and Engineering: A, 485(1-2): 468-475,(2008).
  • [3] Cina B, Gan R. Reducing the susceptibility of alloys, particularly aluminum alloys, to stress corrosion cracking the United States patent 3856584 (1974).
  • [4] Cina B, Ranish B. Aluminum industrial product. Pittsburgh: American Society for Metals; (1974).
  • [5] Yasakau, K. A., Tedim, J., Zheludkevich, M. L., & Ferreira, M. G. S. Smart self-healing coatings for corrosion protection of aluminium alloys. In Handbook of smart coatings for materials protection Woodhead Publishing. 224-274,(2014). [6] Mondolfo, L. F. Aluminum alloys: structure and properties. Elsevier. (2013).
  • [7] Li, J. F., Birbilis, N., Li, C. X., Jia, Z. Q., Cai, B., & Zheng, Z. Q. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150. Materials Characterization, 60(11): 1334-1341, (2009).
  • [8] Zhang, M., Liu, T., He, C., Ding, J., Liu, E., Shi, C., & Zhao, N. Evolution of microstructure and properties of Al–Zn–Mg–Cu–Sc–Zr alloy during aging treatment. Journal of Alloys and Compounds, 658: 946-951, (2016).
  • [9] ] Buha J, Lumley RN, Crosky AG. Secondary aging in an aluminum alloy 7050. Materials Science and Engineering:A , 492:1–10 , (2008).
  • [10] Berg, L. K., Gjønnes, J., Hansen, V. X., Li, X. Z., Knutson-Wedel, M., Schryvers, D., & Wallenberg, L. R. GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta materialia, 49(17): 3443-3451, (2001).
  • [11] Ma, K., Wen, H., Hu, T., Topping, T. D., Isheim, D., Seidman, D. N., ... & Schoenung, J. M.Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Materialia, 62: 141-155,(2014).
  • [12] Ogura, T., Otani, T., Hirose, A., & Sato, T. Improvement of strength and ductility of an Al–Zn–Mg alloy by controlling grain size and precipitate microstructure with Mn and Ag addition. Materials Science and Engineering: A, 580:288-293,(2013).
  • [13] Naeem, H. T., & Mohammed, K. S. RETROGRESSION AND RE-AGING OF ALUMINUM ALLOYS (AA 7075) CONTAINING NICKEL. Digest Journal of Nanomaterials & Biostructures (DJNB), 8(4): (2013).
  • [14] Park, J. K., & Ardell, A. J. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers. Metallurgical Transactions A, 14(10):1957-1965, (1983).
  • [15] Lorimer, G. W., & Nicholson, R. B. Further results on the nucleation of precipitates in the Al- Zn- Mg system. Acta Metallurgica, 14(8):1009-1013,(1966). [16] Yang, J. G., & Ou, B. L. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7050 Al‐alloy. Scandinavian journal of metallurgy, 30(3):158-167, (2001).
  • [17] Raghavan, M. Microanalysis of precipitate free zones (PFZ) in Al-Zn-Mg and Cu-Ni-Nb alloys. Metallurgical Transactions A, 11(6): 993-999,(1980).
  • [18] Ringer, S. P., & Hono, K.Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies. Materials characterization, 44(1-2): 101-131,(2000).
  • [19] Gündüz, S., & Kaçar, R. Strengthening of 6063 aluminium alloy by strain ageing. Kovove Mater, 46:345-350, (2001).
  • [20] Tanner, D. A., & Robinson, J. S. Effect of precipitation during quenching on the mechanical properties of the aluminium alloy 7010 in the W-temper. Journal of Materials Processing Technology, 153 :998-1004,(2014).
  • [21] Xia, Y. P., Pan, Q. L., Li, W. B., Liu, X. Y., & He, Y. B. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy. Materials & Design, 32(4):2149-2156,(2011).
  • [22] ASM, ASM Metals Handbook 10 materials characterization. Fifth printing. (1998).
  • [23] Altuntaş, G., Altuntaş, O., & Bostan, B. Characterization of Al-7075/T651 Alloy by RRA Heat Treatment and Different Pre-deformation Effects. Transactıons of The Indıan Instıtute of Metals 1-9,(2021).
  • [24] Özer, A. The microstructures and mechanical properties of Al-15Si-2.5Cu-0.5Mg/(wt%)B4C composites produced through hot pressing technique and subjected to hot extrusion. Materıals Chemıstry and Physıcs , vol.183:288-296,(2016).
  • [25] Ateş, H., Ozdemir, A. T. , Uzun, M., & Uygur, I.Effect of deep sub-zero treatment on mechanical properties of AA5XXX aluminum plates adjoined by MIG welding technique. SCIENTIA IRANICA, vol.24(4) :1950-1957, (2017).

Investigation of RRA Heat Treatment Effects on Al - Zn - Mg - Cu Alloy Crystallography

Yıl 2022, Cilt: 25 Sayı: 2, 871 - 877, 01.06.2022
https://doi.org/10.2339/politeknik.919492

Öz

In structural applications where strength, i.e. strength to weight ratio is the primary requirement, iron-based materials must be replaced by materials with similar properties. Heat-treatable 7075 aluminum alloy is considered one of the common interests of researchers due to its strength similar to that of steels and is widely used in automobile, aircraft industry and marine applications. Besides its high hardness and strength, it is one of the most important alloys of the defense industry with its lightness. In this study, the changes that occurred during the retrogression and different re-aging (RRA) times on heat treatments of the commercially purchased T651 heat treated Al - Zn - Mg - Cu alloy were systematically evaluated.This heat treatment cycle; The first step of the RRA heat treatment, the retrogression process (re-solution), the samples are kept at 200 ° C for 10 minutes and immediately cooled in water at room temperature and then in an argon atmosphere protected oven at 120 ° C for 2-4-8-16-24-32 hours respectively. -aging (re-aging) process has been completed with their application. SEM was used for microstructure studies and macro hardness measurement (HV1) of samples. EDS and map analysis were done and elemental distributions were observed. Micro strain values and the distance between planes were calculated by X-RD analysis.As the re-aging time of the sediments increased, their distribution increased. According to the results of the study, the maximum hardness value was seen in the material with RRA heat treatment for 24 hours.

Proje Numarası

07/2019-15

Kaynakça

  • [1] Vikas, P., Sudhakar, I., MohanaRao, G., & Srinivas, B. Aging behaviour of hot deformed AA7075 aluminium alloy. Materials Today: Proceedings. 41: 1013-1017, (2021).
  • [2] Reda, Y., Abdel-Karim, R., & Elmahallawi, I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging. Materials Science and Engineering: A, 485(1-2): 468-475,(2008).
  • [3] Cina B, Gan R. Reducing the susceptibility of alloys, particularly aluminum alloys, to stress corrosion cracking the United States patent 3856584 (1974).
  • [4] Cina B, Ranish B. Aluminum industrial product. Pittsburgh: American Society for Metals; (1974).
  • [5] Yasakau, K. A., Tedim, J., Zheludkevich, M. L., & Ferreira, M. G. S. Smart self-healing coatings for corrosion protection of aluminium alloys. In Handbook of smart coatings for materials protection Woodhead Publishing. 224-274,(2014). [6] Mondolfo, L. F. Aluminum alloys: structure and properties. Elsevier. (2013).
  • [7] Li, J. F., Birbilis, N., Li, C. X., Jia, Z. Q., Cai, B., & Zheng, Z. Q. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150. Materials Characterization, 60(11): 1334-1341, (2009).
  • [8] Zhang, M., Liu, T., He, C., Ding, J., Liu, E., Shi, C., & Zhao, N. Evolution of microstructure and properties of Al–Zn–Mg–Cu–Sc–Zr alloy during aging treatment. Journal of Alloys and Compounds, 658: 946-951, (2016).
  • [9] ] Buha J, Lumley RN, Crosky AG. Secondary aging in an aluminum alloy 7050. Materials Science and Engineering:A , 492:1–10 , (2008).
  • [10] Berg, L. K., Gjønnes, J., Hansen, V. X., Li, X. Z., Knutson-Wedel, M., Schryvers, D., & Wallenberg, L. R. GP-zones in Al–Zn–Mg alloys and their role in artificial aging. Acta materialia, 49(17): 3443-3451, (2001).
  • [11] Ma, K., Wen, H., Hu, T., Topping, T. D., Isheim, D., Seidman, D. N., ... & Schoenung, J. M.Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Materialia, 62: 141-155,(2014).
  • [12] Ogura, T., Otani, T., Hirose, A., & Sato, T. Improvement of strength and ductility of an Al–Zn–Mg alloy by controlling grain size and precipitate microstructure with Mn and Ag addition. Materials Science and Engineering: A, 580:288-293,(2013).
  • [13] Naeem, H. T., & Mohammed, K. S. RETROGRESSION AND RE-AGING OF ALUMINUM ALLOYS (AA 7075) CONTAINING NICKEL. Digest Journal of Nanomaterials & Biostructures (DJNB), 8(4): (2013).
  • [14] Park, J. K., & Ardell, A. J. Microstructures of the commercial 7075 Al alloy in the T651 and T7 tempers. Metallurgical Transactions A, 14(10):1957-1965, (1983).
  • [15] Lorimer, G. W., & Nicholson, R. B. Further results on the nucleation of precipitates in the Al- Zn- Mg system. Acta Metallurgica, 14(8):1009-1013,(1966). [16] Yang, J. G., & Ou, B. L. Influence of microstructure on the mechanical properties and stress corrosion susceptibility of 7050 Al‐alloy. Scandinavian journal of metallurgy, 30(3):158-167, (2001).
  • [17] Raghavan, M. Microanalysis of precipitate free zones (PFZ) in Al-Zn-Mg and Cu-Ni-Nb alloys. Metallurgical Transactions A, 11(6): 993-999,(1980).
  • [18] Ringer, S. P., & Hono, K.Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies. Materials characterization, 44(1-2): 101-131,(2000).
  • [19] Gündüz, S., & Kaçar, R. Strengthening of 6063 aluminium alloy by strain ageing. Kovove Mater, 46:345-350, (2001).
  • [20] Tanner, D. A., & Robinson, J. S. Effect of precipitation during quenching on the mechanical properties of the aluminium alloy 7010 in the W-temper. Journal of Materials Processing Technology, 153 :998-1004,(2014).
  • [21] Xia, Y. P., Pan, Q. L., Li, W. B., Liu, X. Y., & He, Y. B. Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy. Materials & Design, 32(4):2149-2156,(2011).
  • [22] ASM, ASM Metals Handbook 10 materials characterization. Fifth printing. (1998).
  • [23] Altuntaş, G., Altuntaş, O., & Bostan, B. Characterization of Al-7075/T651 Alloy by RRA Heat Treatment and Different Pre-deformation Effects. Transactıons of The Indıan Instıtute of Metals 1-9,(2021).
  • [24] Özer, A. The microstructures and mechanical properties of Al-15Si-2.5Cu-0.5Mg/(wt%)B4C composites produced through hot pressing technique and subjected to hot extrusion. Materıals Chemıstry and Physıcs , vol.183:288-296,(2016).
  • [25] Ateş, H., Ozdemir, A. T. , Uzun, M., & Uygur, I.Effect of deep sub-zero treatment on mechanical properties of AA5XXX aluminum plates adjoined by MIG welding technique. SCIENTIA IRANICA, vol.24(4) :1950-1957, (2017).
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Gözde Altuntaş 0000-0003-4504-0850

Bülent Bostan 0000-0002-6114-875X

Proje Numarası 07/2019-15
Yayımlanma Tarihi 1 Haziran 2022
Gönderilme Tarihi 18 Nisan 2021
Yayımlandığı Sayı Yıl 2022 Cilt: 25 Sayı: 2

Kaynak Göster

APA Altuntaş, G., & Bostan, B. (2022). Al – Zn – Mg – Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi. Politeknik Dergisi, 25(2), 871-877. https://doi.org/10.2339/politeknik.919492
AMA Altuntaş G, Bostan B. Al – Zn – Mg – Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi. Politeknik Dergisi. Haziran 2022;25(2):871-877. doi:10.2339/politeknik.919492
Chicago Altuntaş, Gözde, ve Bülent Bostan. “Al – Zn – Mg – Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi”. Politeknik Dergisi 25, sy. 2 (Haziran 2022): 871-77. https://doi.org/10.2339/politeknik.919492.
EndNote Altuntaş G, Bostan B (01 Haziran 2022) Al – Zn – Mg – Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi. Politeknik Dergisi 25 2 871–877.
IEEE G. Altuntaş ve B. Bostan, “Al – Zn – Mg – Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi”, Politeknik Dergisi, c. 25, sy. 2, ss. 871–877, 2022, doi: 10.2339/politeknik.919492.
ISNAD Altuntaş, Gözde - Bostan, Bülent. “Al – Zn – Mg – Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi”. Politeknik Dergisi 25/2 (Haziran 2022), 871-877. https://doi.org/10.2339/politeknik.919492.
JAMA Altuntaş G, Bostan B. Al – Zn – Mg – Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi. Politeknik Dergisi. 2022;25:871–877.
MLA Altuntaş, Gözde ve Bülent Bostan. “Al – Zn – Mg – Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi”. Politeknik Dergisi, c. 25, sy. 2, 2022, ss. 871-7, doi:10.2339/politeknik.919492.
Vancouver Altuntaş G, Bostan B. Al – Zn – Mg – Cu Alaşımının Kristalografisine RRA Isıl İşlemi Etkilerinin İncelenmesi. Politeknik Dergisi. 2022;25(2):871-7.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.