Öz
Buried mines pose great dangers to humans and animals around the world, which means thousands of people die each year from buried mines. Detecting and destroying these mines without harming people is an important issue. Today, these landmines are detected using different methods such as Ground Effect Radar, Electromagnetic induction, Infrared and Nuclear Quadrupole Resonance and active sensors are generally used in most of these methods. Although active sensor-based landmine detectors are often used for performance reasons, they can cause unintentional landmine explosions because they operate with transmitted and reflected signals. On the other hand, there is no such obstacle that can perform better in passive sensor-based landmine detectors depending on the design criteria. Therefore, in this study, a prototype design including passive sensor with magnetic anomaly method has been developed and shown. For the performance analysis of this detector, real landmines are used and the designed system is tested with different distance values in different soil types. The results show that the prototype produced successfully detects different types of landmines, is assertive in its lightness and only 1750 grams with its battery, providing sensitivity as well as advantages such as ease of use and low cost. It also shows the feature of being the first handheld landmine detector based on magnetic anomaly.