Düz plaka kollektör kullanan bir güneş enerjili su ısıtma sistemi, Türkiye'deki Ankara ili için, bir konut biriminin kullanım sıcak suyu ihtiyacı için modellenmiştir. Gerekli tasarım parametreleri belirlenmiş ve analizler TRNSYS simülasyon programı kullanılarak gerçekleştirilmiştir. Modellenen sistemde kullanım suyu sıcaklığı 55 °C olarak belirlenmiş ve kullanım yoğunluğuna göre gün içerisinde farklı debilerde su çekimleri gerçekleştirilmiştir. Su çekim hızları 07.00-09.00 saatleri arasında 80 kg/saat, 12.00-13.00 saatleri arasında 100 kg/saat ve 17.00-22.00 saatleri arasında 50 kg/saat olarak belirlenmiştir. Elde edilen sonuçlara göre tasarlanan sistem, yardımcı ısıtıcılar vasıtasıyla güneş enerjisi kullanılarak yaz ve kış aylarındaki sıcak su ihtiyacını karşılayabilmiştir. Kolektör verimi Eylül ayında %40 ile en yüksek değerine ulaşırken, Aralık ayında %8 ile en düşük verim değerine ulaşmıştır.
[1] Lamrani,B., Khouya,A. and Draoui, A., “Energy and environmental analysis of an indirect hybrid solar dryer of wood using TRNSYS software,” Sol. Energy, 183, 132–145, (2019).
[2] Bidhendi, M.V., Abbassi,Y., “Exploring dynamic operation of a solar dish-stirling engine: Validation and implementation of a novel TRNSYS type,” Sustain. Energy Technol. Assessments, 40, 100765, (2020).
[3] Saleem, M. S., Abas, N. Kalair, A.R., Rauf, A., Haider, A., Tahir, M.S., Sagir, M., “Design and optimization of hybrid solar-hydrogen generation system using TRNSYS,” Int. J. Hydrogen Energy, 45(32): 15814–15830, (2020).
[4] Yamani,N., Khellaf,A., Mohammedi, K. and Behar, O., “Assessment of solar thermal tower technology under Algerian climate,” Energy, 126, 444–460, (2017).
[5] Sözen A., Menlik T., Çiftçi E., Anvari-Moghaddam, A., “Alternative hybrid solution suggestions for heating/cooling in Turkey using data envelopment analysis and TOPSIS”, Politeknik Dergisi, (2021).
[6] Lu, S., Zhao, Y. , Fang, K., Li, Y. and Sun, P., “Establishment and experimental verification of TRNSYS model for PCM floor coupled with solar water heating system,” Energy Build., 140, 245–260, (2017).
[7] Su U. Ö., Sözen A., Menlik T., “Isı borulu güneş kollektörlerinde nano çözelti ile performansın iyileştirilmesi”, Politeknik Dergisi, 22(1): 245-257, (2019).
[8] Kalogirou, S. A., “Use of TRYNSYS for modeling and simulation of a hybrid PV– thermal solarsys tem for Cyprus.,” Renew. Energy, 23, 247–60, (2001).
[9] Andrés, A. C. and Cejudo López, J. M., “TRNSYS model of a thermosiphon solar domestic water heater with a horizontal store and mantle heat exchanger,” Sol. Energy, 72(2): 89–98, (2002).
[10] Hobbi, A. and Siddiqui, K., “Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using TRNSYS,” Sol. Energy, 83(5): 700–714, (2009).
[11] Khan, M. S. A., Badar, A. W., Talha, T., Khan, M. W. and Butt, F. S., “Configuration based modeling and performance analysis of single effect solar absorption cooling system in TRNSYS,” Energy
Convers. Manag., 157, 351–363, (2017).
[12] Coşkun, S., Güler, F., Fazliç, M. A., and Ergün, E. H., “Dikey Ti̇p Toprak KaynakliBi̇r Isi PompasininSi̇mülasyonu,” Uludağ Univ. J. Fac. Eng., 23(3): 155–168, (2018).
[13] Antoniadis, C. N. and Martinopoulos, G., “Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS,” Renew. Energy, 137, 56–66, (2019).
[14] Yılancı, A., Atalay, Ö., Koçar, G., Eryaşar, A., “Dinamik test metodu ile bir güneş kollektörünün ısıl performansının belirlenmesi”, Pamukkale Univ Muh Bilim Dergisi, 25(4): 417-422, (2019).
[15] İşler, Y.S., Salihmuhsin, M., ” Şebekeden Bağımsız PV Sistemin TRNSYS ile Gerçek Zamanlı Modellenmesi”, KSÜ Mühendislik Bilimleri Dergisi, 21(1), (2018).
[16] Lu, J., Tang,Y., Li, Z., He, G., ” Solar heat pump configurations for water heating system in China”, Applied Thermal Engineering, 187,116570, (2021).
[17] Internet page: https://www.enerjiatlasi.com/, (2022).
[18] Internet page: https://tr.climate-data.org/asya/tuerkiye/ankara/ankara-172, (2022).
[19] Internet page: https://mgm.gov.tr/, (2022).
[20] Karaçavuş, B., “Türkiye’nin belirli iklim bölgeleri için güneş enerjili sıcak su sisteminin optimizasyonu”, Journal of the Faculty of Engineering and Architecture of Gazi University 32(3): 843-853,
(2017).
[21] Duffie J.A., Beckman W.A., “Solar Engineering of thermal processes”, second ed. John Wiley& Sons, New York, (1991).
[22] Soriga, I., Badescu, V., “Performance of SDHW systems with fully mixed and stratified tank operation under radiative regimes with different degree of stability”, Energy, 118, 1018-1034, (2017).
[23] Li, R., Dai, Y., Wang, R., “Experimental investigation and simulation analysis of the thermal performance of a balcony wall integrated solar water heating unit”, Renewable Energy, 75, 115-122, (2015).
[24] Tiwari, A., Gupta, S., Joshi, A.K., Raval, F., Sojitra, M., “TRNSYS simulation of flat plate solar collector based water heating system in Indian climatic condition”, Materials Today: Proceedings, 46 (11):
5360-5365, (2021).
Examination of flat plate collector solar hot water system for Ankara province in Türkiye with TRNSYS software
Yıl 2022,
Cilt: 25 Sayı: 4, 1809 - 1816, 16.12.2022
A domestic solar water heating system using a flat plate collector is modeled for the domestic hot water requirement of a residential unit in Ankara, Turkey. The necessary design parameters were determined and the analysis was carried out using the TRNSYS simulation program. In the modeled system, the domestic water temperature was determined as 55 °C and water withdrawals were carried out at different flow rates during the day according to the usage intensity. The water withdrawal rates were determined as 80 kg/h between 07.00-09.00, 100 kg/h between 12.00-13.00 and 50 kg/h between 17.00-22.00. According to the results obtained, the designed system was able to meet the hot water need in summer and winter months by using solar energy through auxiliary heaters. While the collector efficiency reached its highest value with 40% in September, it reached the lowest efficiency value with 8% in December.
[1] Lamrani,B., Khouya,A. and Draoui, A., “Energy and environmental analysis of an indirect hybrid solar dryer of wood using TRNSYS software,” Sol. Energy, 183, 132–145, (2019).
[2] Bidhendi, M.V., Abbassi,Y., “Exploring dynamic operation of a solar dish-stirling engine: Validation and implementation of a novel TRNSYS type,” Sustain. Energy Technol. Assessments, 40, 100765, (2020).
[3] Saleem, M. S., Abas, N. Kalair, A.R., Rauf, A., Haider, A., Tahir, M.S., Sagir, M., “Design and optimization of hybrid solar-hydrogen generation system using TRNSYS,” Int. J. Hydrogen Energy, 45(32): 15814–15830, (2020).
[4] Yamani,N., Khellaf,A., Mohammedi, K. and Behar, O., “Assessment of solar thermal tower technology under Algerian climate,” Energy, 126, 444–460, (2017).
[5] Sözen A., Menlik T., Çiftçi E., Anvari-Moghaddam, A., “Alternative hybrid solution suggestions for heating/cooling in Turkey using data envelopment analysis and TOPSIS”, Politeknik Dergisi, (2021).
[6] Lu, S., Zhao, Y. , Fang, K., Li, Y. and Sun, P., “Establishment and experimental verification of TRNSYS model for PCM floor coupled with solar water heating system,” Energy Build., 140, 245–260, (2017).
[7] Su U. Ö., Sözen A., Menlik T., “Isı borulu güneş kollektörlerinde nano çözelti ile performansın iyileştirilmesi”, Politeknik Dergisi, 22(1): 245-257, (2019).
[8] Kalogirou, S. A., “Use of TRYNSYS for modeling and simulation of a hybrid PV– thermal solarsys tem for Cyprus.,” Renew. Energy, 23, 247–60, (2001).
[9] Andrés, A. C. and Cejudo López, J. M., “TRNSYS model of a thermosiphon solar domestic water heater with a horizontal store and mantle heat exchanger,” Sol. Energy, 72(2): 89–98, (2002).
[10] Hobbi, A. and Siddiqui, K., “Optimal design of a forced circulation solar water heating system for a residential unit in cold climate using TRNSYS,” Sol. Energy, 83(5): 700–714, (2009).
[11] Khan, M. S. A., Badar, A. W., Talha, T., Khan, M. W. and Butt, F. S., “Configuration based modeling and performance analysis of single effect solar absorption cooling system in TRNSYS,” Energy
Convers. Manag., 157, 351–363, (2017).
[12] Coşkun, S., Güler, F., Fazliç, M. A., and Ergün, E. H., “Dikey Ti̇p Toprak KaynakliBi̇r Isi PompasininSi̇mülasyonu,” Uludağ Univ. J. Fac. Eng., 23(3): 155–168, (2018).
[13] Antoniadis, C. N. and Martinopoulos, G., “Optimization of a building integrated solar thermal system with seasonal storage using TRNSYS,” Renew. Energy, 137, 56–66, (2019).
[14] Yılancı, A., Atalay, Ö., Koçar, G., Eryaşar, A., “Dinamik test metodu ile bir güneş kollektörünün ısıl performansının belirlenmesi”, Pamukkale Univ Muh Bilim Dergisi, 25(4): 417-422, (2019).
[15] İşler, Y.S., Salihmuhsin, M., ” Şebekeden Bağımsız PV Sistemin TRNSYS ile Gerçek Zamanlı Modellenmesi”, KSÜ Mühendislik Bilimleri Dergisi, 21(1), (2018).
[16] Lu, J., Tang,Y., Li, Z., He, G., ” Solar heat pump configurations for water heating system in China”, Applied Thermal Engineering, 187,116570, (2021).
[17] Internet page: https://www.enerjiatlasi.com/, (2022).
[18] Internet page: https://tr.climate-data.org/asya/tuerkiye/ankara/ankara-172, (2022).
[19] Internet page: https://mgm.gov.tr/, (2022).
[20] Karaçavuş, B., “Türkiye’nin belirli iklim bölgeleri için güneş enerjili sıcak su sisteminin optimizasyonu”, Journal of the Faculty of Engineering and Architecture of Gazi University 32(3): 843-853,
(2017).
[21] Duffie J.A., Beckman W.A., “Solar Engineering of thermal processes”, second ed. John Wiley& Sons, New York, (1991).
[22] Soriga, I., Badescu, V., “Performance of SDHW systems with fully mixed and stratified tank operation under radiative regimes with different degree of stability”, Energy, 118, 1018-1034, (2017).
[23] Li, R., Dai, Y., Wang, R., “Experimental investigation and simulation analysis of the thermal performance of a balcony wall integrated solar water heating unit”, Renewable Energy, 75, 115-122, (2015).
[24] Tiwari, A., Gupta, S., Joshi, A.K., Raval, F., Sojitra, M., “TRNSYS simulation of flat plate solar collector based water heating system in Indian climatic condition”, Materials Today: Proceedings, 46 (11):
5360-5365, (2021).
Kurnuç Seyhan, A., Uzun, S., & Coşkun, S. (2022). Examination of flat plate collector solar hot water system for Ankara province in Türkiye with TRNSYS software. Politeknik Dergisi, 25(4), 1809-1816. https://doi.org/10.2339/politeknik.1142233
AMA
Kurnuç Seyhan A, Uzun S, Coşkun S. Examination of flat plate collector solar hot water system for Ankara province in Türkiye with TRNSYS software. Politeknik Dergisi. Aralık 2022;25(4):1809-1816. doi:10.2339/politeknik.1142233
Chicago
Kurnuç Seyhan, Aslıhan, Sinem Uzun, ve Salih Coşkun. “Examination of Flat Plate Collector Solar Hot Water System for Ankara Province in Türkiye With TRNSYS Software”. Politeknik Dergisi 25, sy. 4 (Aralık 2022): 1809-16. https://doi.org/10.2339/politeknik.1142233.
EndNote
Kurnuç Seyhan A, Uzun S, Coşkun S (01 Aralık 2022) Examination of flat plate collector solar hot water system for Ankara province in Türkiye with TRNSYS software. Politeknik Dergisi 25 4 1809–1816.
IEEE
A. Kurnuç Seyhan, S. Uzun, ve S. Coşkun, “Examination of flat plate collector solar hot water system for Ankara province in Türkiye with TRNSYS software”, Politeknik Dergisi, c. 25, sy. 4, ss. 1809–1816, 2022, doi: 10.2339/politeknik.1142233.
ISNAD
Kurnuç Seyhan, Aslıhan vd. “Examination of Flat Plate Collector Solar Hot Water System for Ankara Province in Türkiye With TRNSYS Software”. Politeknik Dergisi 25/4 (Aralık 2022), 1809-1816. https://doi.org/10.2339/politeknik.1142233.
JAMA
Kurnuç Seyhan A, Uzun S, Coşkun S. Examination of flat plate collector solar hot water system for Ankara province in Türkiye with TRNSYS software. Politeknik Dergisi. 2022;25:1809–1816.
MLA
Kurnuç Seyhan, Aslıhan vd. “Examination of Flat Plate Collector Solar Hot Water System for Ankara Province in Türkiye With TRNSYS Software”. Politeknik Dergisi, c. 25, sy. 4, 2022, ss. 1809-16, doi:10.2339/politeknik.1142233.
Vancouver
Kurnuç Seyhan A, Uzun S, Coşkun S. Examination of flat plate collector solar hot water system for Ankara province in Türkiye with TRNSYS software. Politeknik Dergisi. 2022;25(4):1809-16.