The Effect of Graphite Particles as Lubricant Additive on the Friction and Wear Behaviour of AISI H11 Steel
Yıl 2022,
Cilt: 25 Sayı: 4, 1495 - 1503, 16.12.2022
Onur Ünlüoğlu
,
Osman Nuri Çelik
Öz
In recent years, the tribological investigations have been focused on dispersing additives into the oil lubricants to improve their friction and wear properties. Microhardness measurements of the samples made from heat treated hot work tool steel were carried out in this study. The wear and friction behaviour of the samples were investigated under dry condition, base oil and 5%, 10%, 15%, 20% and 25% wt. graphite as oil additive. Wear tests were carried out by means of a ball-on-disc test configuration. Average friction coefficients and wear scar related wear rates were calculated. The morphology of the worn surfaces were analyzed by optical microscopy and scanning electron microscopy (SEM). The study leads to the conclusion that addition of graphite particles improved the wear and friction properties of the lubricant. 5% graphite dispersed oil additive exhibited the best tribological performance in the tests.
Kaynakça
- [1] Higgs C. F., Wornyoh E.Y.A., “An in situ mechanism for self-replenishing power transfer films: experiments and modeling”, Wear, 264: 131-138, (2008).
- [2] Yu Y., Gu J., Kang F., Kong X., Mo W., “Surface restoration induced by lubricant additive of natural minerals”, Applied Surface Science, 253(18): 7549-7553, (2007).
- [3] Zhang B., Xu Y., Gao F., Shi P., Xu B., Wu Y., “Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive”, Applied Surface Science, 257(7): 2540-2549, (2011).
- [4] Yu H. L., Xu Y., Shi P. J., Wang H. M., Zhang W., Xu B. S., “Effect of thermal activation on the tribological behaviours of serpentine ultrafine powders as an additive in liquid paraffin”, Tribology International, 44(12): 1736-1741, (2011).
- [5] Yu H. L., Xu Y., Shi P. J., Wang H. M., Zhao Y., Xu B. S., Bai, Z. M., “Tribological behaviors of surface-coated serpentine ultrafine powders as lubricant additive”, Tribology International, 43(3): 667-675, (2010).
- [6] Pawlak Z., Kaldonski T., Pai R., Bayraktar E., Oloyede A., “A comparative study on the tribological behaviour of hexagonal boron nitride (h-BN) as lubricating micro-particles—An additive in porous sliding bearings for a car clutch”, Wear, 267(5-8): 1198-1202, (2009).
- [7] Shi H., Fu X., Zhou X., Wang D., Hu Z., “A low-temperature extraction-solvothermal route to the fabrication of micro-sized MoS2 spheres modified by Cyanex 301”, Journal of Solid State Chemistry, 179(6): 1690-1697, (2006).
- [8] Feng W., “Research on microstructure of the auto-restoration layer of worn surface of metals”, Materials Science and Engineering A, 399(1-2): 271-275, (2005).
- [9] Clauss F. J., “Solid lubricants and self-lubricating solids”, Chapter 5, Handbook of Tribology, McGraw Hill Inc., USA, (1991).
- [10] Hutchings I., Shipway P., “Tribology: Friction and wear of engineering materials”, 2nd edition, Butterworth- Heinemann Publishing, (2017).
- [11] Jackson M. J., Morrell J., “Tribology in manufacturing”, Tribology for engineers, Woodhead Publishing, Cambridge, UK, (2011).
- [12] Sliney H. E., “Solid lubricant materials for high temperatures - a review”, Tribology International, October: 303-315, (1982).
- [13] Sharma V., Joshi R., Pant H., Sharma V. K., “Improvement in frictional behaviour of SAE 15W-40 lubricant with the addition of graphite particles”, Materials Today: Proceedings, 25: 719-723, (2020).
- [14] Lee C. G., Hwang Y. J., Choi Y. M., Lee J. K., Choi C., Oh J. M., “A study on the tribological characteristics of graphite nano lubricants”, International Journal of Precision Engineering and Manufacturing, 10(1): 85-90, (2009).
- [15] Srivyas P. D., Charoo M. S., “Nano lubrication behaviour of graphite, h-BN and graphene nano platelets for reducing friction and wear”, Materials Today: Proceedings, 44(1): 7-11, (2021).
- [16] Roberts G. A., Krauss G., Kennedy R., “Tool Steels: 5th Edition”, ASM International, USA, (1998).
- [17] Totten G. E., “Steel heat treatment: metallurgy and technologies”, CRC Press, Florida, USA, (2006).
- [18] Bryson W. E., “Heat treatment: master control manual”, Hanser Publications, Munich, Germany, (2015).
- [19] Bartz W. J., “Some investigation on the influence of particle size on the lubrication effectiveness of molybdenum disulfide”, ASLE Transactions, 15(3): 207-215, (1972).
- [20] Bartz W. J., Oppelt J., “Lubricating effectiveness of oil-soluble additives and molybdenum disulfide dispersed in mineral oil”, Lubrication Engineering, 36: 579-585, (1980).
- [21] Babalık F. C., “Makine elemanları ve konstrüksiyon örnekleri”, Nobel Yayın Dağıtım, 2.Baskı, Ankara, (2006).
- [22] Huang H. D., Tu J. P., Gan L. P., Li, C. Z., “An investigation on tribological properties of graphite nanosheets as oil additive”, Wear, 261(2): 140-144, (2006).
- [23] Prasad B. K., Rathod S., Modi O. P., Yadav M. S., “Influence of talc concentration in oil lubricant on the wear response of a bronze journal bearing”, Wear, 269(5-6): 498-505, (2010).
- [24] Ren B., Gao L., Xie B., Li M., Zhang S., Zu G., Ran X., “Tribological properties and anti-wear mechanism of ZnO@graphene core-shell nanoparticles as lubricant additives”, Tribology International, 144: 106114, (2020).
- [25] Wu H., Zhao J., Xia W., Cheng X., He A., Yun J. H., Wang L., Huang H., Jiao S., Huang L., Zhang S., Jiang Z., “A study of the tribological behaviour of TiO2 nano-additive water-based lubricants”, Tribology International, 109: 398-408, (2017).
- [26] Gu Y., Fei J., Zheng X., Li M., Huang J., Qu M., Zhang L., “Graft PEI ultra-antiwear nanolayer onto carbon spheres as lubricant additives for tribological enhancement”, Tribology International, 153: 106652, (2021).
- [27] Hertz, H., “On the contact of elastic solids”, J. Reine Angew. Math 92: 156-171, (1881).
Grafit Partiküllerinin Yağ Katkısı Olarak AISI H11 Çeliğinin Sürtünme ve Aşınma Davranışı Üzerine Etkisi
Yıl 2022,
Cilt: 25 Sayı: 4, 1495 - 1503, 16.12.2022
Onur Ünlüoğlu
,
Osman Nuri Çelik
Öz
Son yıllarda tribolojik araştırmalar yağlara katkılar ekleyerek onların sürtünme ve aşınma özelliklerini iyileştirmek üzerine yoğunlaşmıştır. Bu çalışmada, ısıl işlem uygulanmış sıcak iş takım çeliği malzemeden numunelerin kuru koşul, katkısız yağ ve ağırlıkça %5, %10, %15, %20 ve %25 grafit katkılı yağlarda aşınma ve sürtünme özellikleri incelenmiştir. Aşınma deneyleri ball-on-disc deney düzeneği ile gerçekleştirilmiştir. Ortalama sürtünme katsayıları ve aşınma izlerine bağlı olarak aşınma oranları hesaplanmıştır. Mikrosertlik ölçümleri yapılan numunelerin optik mikroskop ve taramalı elektron mikroskobu (SEM) ile aşınan yüzeylerinin mikroyapı analizleri yapılmıştır. Çalışmada sonuç olarak, grafit partiküllerinin yağın aşınma ve sürtünme özelliklerini iyileştirdiği görülmüştür. Deneylerde en iyi tribolojik performansı %5 grafit katkılı yağ sergilemiştir.
Kaynakça
- [1] Higgs C. F., Wornyoh E.Y.A., “An in situ mechanism for self-replenishing power transfer films: experiments and modeling”, Wear, 264: 131-138, (2008).
- [2] Yu Y., Gu J., Kang F., Kong X., Mo W., “Surface restoration induced by lubricant additive of natural minerals”, Applied Surface Science, 253(18): 7549-7553, (2007).
- [3] Zhang B., Xu Y., Gao F., Shi P., Xu B., Wu Y., “Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive”, Applied Surface Science, 257(7): 2540-2549, (2011).
- [4] Yu H. L., Xu Y., Shi P. J., Wang H. M., Zhang W., Xu B. S., “Effect of thermal activation on the tribological behaviours of serpentine ultrafine powders as an additive in liquid paraffin”, Tribology International, 44(12): 1736-1741, (2011).
- [5] Yu H. L., Xu Y., Shi P. J., Wang H. M., Zhao Y., Xu B. S., Bai, Z. M., “Tribological behaviors of surface-coated serpentine ultrafine powders as lubricant additive”, Tribology International, 43(3): 667-675, (2010).
- [6] Pawlak Z., Kaldonski T., Pai R., Bayraktar E., Oloyede A., “A comparative study on the tribological behaviour of hexagonal boron nitride (h-BN) as lubricating micro-particles—An additive in porous sliding bearings for a car clutch”, Wear, 267(5-8): 1198-1202, (2009).
- [7] Shi H., Fu X., Zhou X., Wang D., Hu Z., “A low-temperature extraction-solvothermal route to the fabrication of micro-sized MoS2 spheres modified by Cyanex 301”, Journal of Solid State Chemistry, 179(6): 1690-1697, (2006).
- [8] Feng W., “Research on microstructure of the auto-restoration layer of worn surface of metals”, Materials Science and Engineering A, 399(1-2): 271-275, (2005).
- [9] Clauss F. J., “Solid lubricants and self-lubricating solids”, Chapter 5, Handbook of Tribology, McGraw Hill Inc., USA, (1991).
- [10] Hutchings I., Shipway P., “Tribology: Friction and wear of engineering materials”, 2nd edition, Butterworth- Heinemann Publishing, (2017).
- [11] Jackson M. J., Morrell J., “Tribology in manufacturing”, Tribology for engineers, Woodhead Publishing, Cambridge, UK, (2011).
- [12] Sliney H. E., “Solid lubricant materials for high temperatures - a review”, Tribology International, October: 303-315, (1982).
- [13] Sharma V., Joshi R., Pant H., Sharma V. K., “Improvement in frictional behaviour of SAE 15W-40 lubricant with the addition of graphite particles”, Materials Today: Proceedings, 25: 719-723, (2020).
- [14] Lee C. G., Hwang Y. J., Choi Y. M., Lee J. K., Choi C., Oh J. M., “A study on the tribological characteristics of graphite nano lubricants”, International Journal of Precision Engineering and Manufacturing, 10(1): 85-90, (2009).
- [15] Srivyas P. D., Charoo M. S., “Nano lubrication behaviour of graphite, h-BN and graphene nano platelets for reducing friction and wear”, Materials Today: Proceedings, 44(1): 7-11, (2021).
- [16] Roberts G. A., Krauss G., Kennedy R., “Tool Steels: 5th Edition”, ASM International, USA, (1998).
- [17] Totten G. E., “Steel heat treatment: metallurgy and technologies”, CRC Press, Florida, USA, (2006).
- [18] Bryson W. E., “Heat treatment: master control manual”, Hanser Publications, Munich, Germany, (2015).
- [19] Bartz W. J., “Some investigation on the influence of particle size on the lubrication effectiveness of molybdenum disulfide”, ASLE Transactions, 15(3): 207-215, (1972).
- [20] Bartz W. J., Oppelt J., “Lubricating effectiveness of oil-soluble additives and molybdenum disulfide dispersed in mineral oil”, Lubrication Engineering, 36: 579-585, (1980).
- [21] Babalık F. C., “Makine elemanları ve konstrüksiyon örnekleri”, Nobel Yayın Dağıtım, 2.Baskı, Ankara, (2006).
- [22] Huang H. D., Tu J. P., Gan L. P., Li, C. Z., “An investigation on tribological properties of graphite nanosheets as oil additive”, Wear, 261(2): 140-144, (2006).
- [23] Prasad B. K., Rathod S., Modi O. P., Yadav M. S., “Influence of talc concentration in oil lubricant on the wear response of a bronze journal bearing”, Wear, 269(5-6): 498-505, (2010).
- [24] Ren B., Gao L., Xie B., Li M., Zhang S., Zu G., Ran X., “Tribological properties and anti-wear mechanism of ZnO@graphene core-shell nanoparticles as lubricant additives”, Tribology International, 144: 106114, (2020).
- [25] Wu H., Zhao J., Xia W., Cheng X., He A., Yun J. H., Wang L., Huang H., Jiao S., Huang L., Zhang S., Jiang Z., “A study of the tribological behaviour of TiO2 nano-additive water-based lubricants”, Tribology International, 109: 398-408, (2017).
- [26] Gu Y., Fei J., Zheng X., Li M., Huang J., Qu M., Zhang L., “Graft PEI ultra-antiwear nanolayer onto carbon spheres as lubricant additives for tribological enhancement”, Tribology International, 153: 106652, (2021).
- [27] Hertz, H., “On the contact of elastic solids”, J. Reine Angew. Math 92: 156-171, (1881).