Araştırma Makalesi
BibTex RIS Kaynak Göster

Yeşil Hidrojen Üretiminde Enerji ve Ekserji Analizi

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1206392

Öz

ABSTRACT
Biomass pyrolysis and gasification define as effective thermal technologies to produce sustainable hydrogen from biomass sources. The fundamental aim of this paper compare analysis of energy and exergy a pyrolysis and gasification system. The suggested process conditions occurs two main step as low and high temperature pyrolysis and gasification at 500֯C and 900֯C respectively. The analysis coupled with thermodynamic equilibrium calculate and model implement to product hydrogen with a detailed comparison of the energy and exergy performance of a downdraft gasifier and pyrolysis ipinartamplement using wood chips as the biomass materials. This paper examines energy and exergy yield of two different thermal conversion methods to produce energy. So, the optimum model conditions chose as pyrolysis at 900֯ C with lower energy consumption and not uses agent materials. The energy and exergy analyses are performed two different temperature for all process. The results from the model shows that the energy yield of pyrolysis calculate as 60% and 94% at 500֯ C and 900֯ C. The effects of changing temperature on energy and exergy yield are reported.
Keywords: Biomass Gasification, Equilibrium model, Pyrolysis, Energy and exergy analysis, Hydrogen Production
ÖZET
Biyokütle piroliz ve gazlaştırma sistemleri, biyokütle kaynaklarından sürdürülebilir hidrojen üretmek için etkili termal teknolojiler olarak tanımlanmaktadır. Bu makalenin temel amacı, bir piroliz ve gazlaştırma sisteminin enerji ve ekserji analizini karşılaştırmaktır. Önerilen süreç koşulları sırasıyla 500֯C düşük ve 900֯C yüksek sıcaklıkta piroliz ve 900֯C'de gazlaştırma olmak üzere iki ana aşamada gerçekleşmektedir. Termodinamik denge ile birleştirilmiş analizde, hidrojen üretimi sağlamak için deneysel sonuçlar ile modelleme birleştirilmiştir.
.
Bu makale, enerji üretmek için iki farklı termal dönüştürme yönteminin enerji ve ekserji verimini incelemektedir. İnceleme sonuçlarına göre, optimum model koşulları 900֯ C'de daha düşük enerji tüketimi ile ve ajan malzemeleri kullanmayarak piroliz olarak seçilmiştir. Tüm prosesler için iki farklı sıcaklıkta enerji ve ekserji analizleri yapılmıştır. Modelden elde edilen sonuçlar, piroliz enerji veriminin 500֯ C ve 900֯ C'de %60 ve %94 olarak hesaplandığını göstermektedir. Sıcaklık değişiminin enerji ve ekserji verimi üzerindeki etkileri raporlanmaktadır.

Kaynakça

  • [1] Castello D., Fiori L., “Supercritical water gasification of biomass: a stoichiometric thermodynamic model”, Int J Hydrogen Energy, 40:6771-81, (2015).
  • [2] Palomar A., Sundo M., Velasco P., Camus D., “End-of-pipe waste analysis and integrated solid waste management plan”, Civil Eng J., 5:1970-82, (2019).
  • [3] Adnan M.A. and Hossain M.M., “Co-gasification of Indonesian Coal and Microalgae – A Thermodynamic Study and Performance Evaluation”, Chem Eng Process – Process Intensif, 128: 1-9, (2018).
  • [4] Husain Z., Ansari K.B., Chatake V.S., Urunkar Y., Pandit A.B. and Joshi J.B., “Valorisation of Biomass Pellets to Renewable Fuel and Chemicals Using Pyrolysis: Characterisation of Pyrolysis Products and Its Application”, Indian Chem. Eng., 62: 78–91,(2020).
  • [5] https://unfccc.int, “The United Nation Framework Convention on Climate Change”, The Kyoto protocol New York: United Nations, (2009).
  • [6] Khademi M, Jahanmiri A, Rahimpour M., “A novel configuration for hydrogen production from coupling of methanol and benzene synthesis in a hydrogen permselective membrane reactor”, Int J Hydrogen Energy, 34:5091-107 (2009).
  • [7] Saxena R C, Seal D, Kumar S, Goyal H B., “Thermo-chemical routes for hydrogen rich gas from biomass: a review”, Renewable and Sustainable Energy Reviews, 12:1909–1927, (2008).
  • [8] https://data.worldbank.org/indicator/,“WorldBank”, (2021).
  • [9] C.S. Park, P.S. Roy, S.H. Kim, “Current developments in thermochemical conversion of biomass to fuels and chemicals Gasification for Low-grade Feedstock”, Fuel, (2018).
  • [10] Turn SQ, Kinoshita D, Zhang Z, Ishimura D, Zhou J., “An experimental investigation of hydrogen production from biomass gasification” Int J Hydrogen Energy, 23:641–8,(1998).
  • [11] Balu E, Lee U, Chung J., “High temperature steam gasification of woody biomassea combined experimental and mathematical modeling approach”, Int J Hydrogen Energy, 40:14104-15,(2015).
  • [12] Lu Y, Guo L, Zhang X, Yan Q., “Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water”, Chem Eng J., 131: 233-44, (2007).
  • [13] Sharma S, Sheth PN., “Air steam biomass gasification: experiments, modeling and simulation”, Energy Convers Manage., 110:307-18, (2016).
  • [14] Mahishi MR, Goswami D., “Thermodynamic optimization of biomass gasifier for hydrogen production”, Int J Hydrogen Energy, 32, 3831-40, (2007).
  • [15] Pellegrini LF, de Oliveira Jr S., “Exergy analysis of sugarcane bagasse gasification”, Energy, 32:314-27, (2007).
  • [16] Zhang Y, Li L, Xu P, Liu B, Shuai Y, Li B., “Hydrogen production through biomass gasification in supercritical water: a review from exergy aspect”, Int J Hydrogen Energy, 44: 1572-36, (2019).
  • [17] Mehrpooya M, Khalili M, Sharifzadeh MMM.,“Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)”, Renew Sustain Energy Rev., 91: 869-87, (2018).
  • [18] Zhang Y, Li B, Li H, Liu H., “ Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers”, Thermochim Acta., 519: 65-71, (2011).
  • [19] Abuadala A, Dincer I, Naterer G., “Exergy analysis of hydrogen production from biomass gasification”, Int J Hydrogen Energy, 35:4981-90, (2010).
  • [20] Eri Q, Wu W, Zhao X., “Numerical investigation of the airsteam biomass gasification process based on thermodynamic equilibrium model”, Energies, 10: 2163, (2017).
  • [21] Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., “Effect of operating parameters and moisture content on municipal solid waste pyrolysis and gasification”, Energy Fuel, 30: 3994-4001, (2016).
  • [22] Burhenne, L., Damiani, M., Aicher, T., “Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis”, Fuel, 107:836-847,(2013).
  • [23] Di Blasi, C., “Combustion and gasification rates of lignocellulosic chars. Prog.,” Energy Combust, 35:121-140, (2009).
  • [24] Kabalina, N., Costa, M., Yang, W., Martin, A., “Santarelli, M., Exergy analysis of a polygeneration-enabled district heating and cooling system based on gasification of refuse derived fuel”, J. Clean. Prod., 141:760-773, (2017).
  • [25] Soto Veiga, J.P., Romanelli, T.L., “Mitigation of greenhouse gas emissions using exergy”, J. Clean. Prod., 260:121092, (2017).
  • [26] Bejan, A., “Advanced Engineering Thermodynamics”, 978-1-119-28104-7, 4th Edition. (2016).
  • [27] K. Tae, H. Cho, R. Luck, P.J. Mago., “Modeling of reciprocating internal combustion engines for power generation and heat recovery”, Appl. Energy., 102: 327-335, (2013).
  • [28] Xu P, Jin Y, Cheng Y., “Thermodynamic analysis of the gasification of municipal solid waste”, Engineering, 3:416-22, (2017).
  • [29] Prins MJ, Ptasinski KJ, Janssen FJJG., “Thermodynamics of gas-char reactions: first and second law analysis”, Chemical Engineering Science, 58:13– 16, (2003).
  • [30] Manatura K, Lu J-H, Wu K-T, Hsu H-T., “Exergy analysis on torrefied rice husk pellet in fluidized bed gasification”, Appl Therm Eng, 111:1016-24, (2017).
  • [31] N.S. Barman, S. Ghosh, S. De, “Gasification of biomass in a fixed bed downdraft gasifier - a realistic model including tar”, Bioresour. Technol., 107:505–511, (2012).
  • [32] Boateng AA, Mullen CA, Osgood-Jacobs L, Carlson P, Macken N., “Mass balance, energy, and exergy analysis of bio-oil production by fast pyrolysis”, Trans Am Soc Mech Eng J ENERGY Resour Technol, 134:04-2001, (2012).
  • [33] Souza-Santos ML., “Solid fuels combustion and gasification: modeling”, Simulation, and Equipment Operation, New York, (2004).
  • [34] Basu, P., “Biomass Gasifcation and Pyrolysis: Practical Design and Theory”, Academic Press, Burlington, (2010).
  • [35] Dincer I, Rosen MA., “Exergy as a driver for achieving sustainability” , Int J Green Energy, 1: 1-19, (2004).
  • [36] Szargut J., “Exergy Method: Technical and Ecological Applications”, WIT Press.,(2005).
  • [37] Wang J-J, Yang K, Xu Z-L, Fu C., “Energy and exergy analyses of an integrated CCHP system with biomass air gasification”, Appl Energy, 142:317-27, (2015).
  • [38] Y. A. Çengel, M. A. Boles, Thermodynamics: an engineering approach, McGraw-Hill Higher Education, (2006).
  • [39] Szargut J, Morris DR, Steward FR., Exergy analysis of thermal, chemical and metallurgical processes, Hemisphere Publishing, New York, (1988).
  • [40] K.G. Mansaray, A.E. Ghaly, A.M. Al-Taweel, F. Hamdullahpur, V.I. Ugursal, “Air gasification of rice husk in a dual distributor type fluidized bed gasifier”, Biomass Bioenergy, 17:315-332, (1999).
  • [41] Özbay, G., & Kökten, E. S. “ Modeling of Bio-Oil Production by Pyrolysis of Woody Biomass: Artificial Neural Network Approach.”, Politeknik Dergisi, 23(4), 1255-1264.

ENERGY AND EXERGY ANALYSIS OF GREEN HYDROGEN PRODUCTION

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1206392

Öz

Biomass pyrolysis and gasification define as effective thermal technologies to produce sustainable hydrogen from biomass sources. The fundamental aim of this paper compare analysis of energy and exergy a pyrolysis and gasification system. The suggested process conditions occurs two main step as low and high temperature pyrolysis and gasification at 500֯C and 900֯C respectively. The analysis coupled with thermodynamic equilibrium calculate and model implement to product hydrogen with a detailed comparison of the energy and exergy performance of a downdraft gasifier and pyrolysis ipinartamplement using wood chips as the biomass materials. This paper examines energy and exergy yield of two different thermal conversion methods to produce energy. So, the optimum model conditions chose as pyrolysis at 900֯ C with lower energy consumption and not uses agent materials. The energy and exergy analyses are performed two different temperature for all process. The results from the model shows that the energy yield of pyrolysis calculate as 60% and 94% at 500֯ C and 900֯ C. The effects of changing temperature on energy and exergy yield are reported.

Kaynakça

  • [1] Castello D., Fiori L., “Supercritical water gasification of biomass: a stoichiometric thermodynamic model”, Int J Hydrogen Energy, 40:6771-81, (2015).
  • [2] Palomar A., Sundo M., Velasco P., Camus D., “End-of-pipe waste analysis and integrated solid waste management plan”, Civil Eng J., 5:1970-82, (2019).
  • [3] Adnan M.A. and Hossain M.M., “Co-gasification of Indonesian Coal and Microalgae – A Thermodynamic Study and Performance Evaluation”, Chem Eng Process – Process Intensif, 128: 1-9, (2018).
  • [4] Husain Z., Ansari K.B., Chatake V.S., Urunkar Y., Pandit A.B. and Joshi J.B., “Valorisation of Biomass Pellets to Renewable Fuel and Chemicals Using Pyrolysis: Characterisation of Pyrolysis Products and Its Application”, Indian Chem. Eng., 62: 78–91,(2020).
  • [5] https://unfccc.int, “The United Nation Framework Convention on Climate Change”, The Kyoto protocol New York: United Nations, (2009).
  • [6] Khademi M, Jahanmiri A, Rahimpour M., “A novel configuration for hydrogen production from coupling of methanol and benzene synthesis in a hydrogen permselective membrane reactor”, Int J Hydrogen Energy, 34:5091-107 (2009).
  • [7] Saxena R C, Seal D, Kumar S, Goyal H B., “Thermo-chemical routes for hydrogen rich gas from biomass: a review”, Renewable and Sustainable Energy Reviews, 12:1909–1927, (2008).
  • [8] https://data.worldbank.org/indicator/,“WorldBank”, (2021).
  • [9] C.S. Park, P.S. Roy, S.H. Kim, “Current developments in thermochemical conversion of biomass to fuels and chemicals Gasification for Low-grade Feedstock”, Fuel, (2018).
  • [10] Turn SQ, Kinoshita D, Zhang Z, Ishimura D, Zhou J., “An experimental investigation of hydrogen production from biomass gasification” Int J Hydrogen Energy, 23:641–8,(1998).
  • [11] Balu E, Lee U, Chung J., “High temperature steam gasification of woody biomassea combined experimental and mathematical modeling approach”, Int J Hydrogen Energy, 40:14104-15,(2015).
  • [12] Lu Y, Guo L, Zhang X, Yan Q., “Thermodynamic modeling and analysis of biomass gasification for hydrogen production in supercritical water”, Chem Eng J., 131: 233-44, (2007).
  • [13] Sharma S, Sheth PN., “Air steam biomass gasification: experiments, modeling and simulation”, Energy Convers Manage., 110:307-18, (2016).
  • [14] Mahishi MR, Goswami D., “Thermodynamic optimization of biomass gasifier for hydrogen production”, Int J Hydrogen Energy, 32, 3831-40, (2007).
  • [15] Pellegrini LF, de Oliveira Jr S., “Exergy analysis of sugarcane bagasse gasification”, Energy, 32:314-27, (2007).
  • [16] Zhang Y, Li L, Xu P, Liu B, Shuai Y, Li B., “Hydrogen production through biomass gasification in supercritical water: a review from exergy aspect”, Int J Hydrogen Energy, 44: 1572-36, (2019).
  • [17] Mehrpooya M, Khalili M, Sharifzadeh MMM.,“Model development and energy and exergy analysis of the biomass gasification process (Based on the various biomass sources)”, Renew Sustain Energy Rev., 91: 869-87, (2018).
  • [18] Zhang Y, Li B, Li H, Liu H., “ Thermodynamic evaluation of biomass gasification with air in autothermal gasifiers”, Thermochim Acta., 519: 65-71, (2011).
  • [19] Abuadala A, Dincer I, Naterer G., “Exergy analysis of hydrogen production from biomass gasification”, Int J Hydrogen Energy, 35:4981-90, (2010).
  • [20] Eri Q, Wu W, Zhao X., “Numerical investigation of the airsteam biomass gasification process based on thermodynamic equilibrium model”, Energies, 10: 2163, (2017).
  • [21] Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., “Effect of operating parameters and moisture content on municipal solid waste pyrolysis and gasification”, Energy Fuel, 30: 3994-4001, (2016).
  • [22] Burhenne, L., Damiani, M., Aicher, T., “Effect of feedstock water content and pyrolysis temperature on the structure and reactivity of spruce wood char produced in fixed bed pyrolysis”, Fuel, 107:836-847,(2013).
  • [23] Di Blasi, C., “Combustion and gasification rates of lignocellulosic chars. Prog.,” Energy Combust, 35:121-140, (2009).
  • [24] Kabalina, N., Costa, M., Yang, W., Martin, A., “Santarelli, M., Exergy analysis of a polygeneration-enabled district heating and cooling system based on gasification of refuse derived fuel”, J. Clean. Prod., 141:760-773, (2017).
  • [25] Soto Veiga, J.P., Romanelli, T.L., “Mitigation of greenhouse gas emissions using exergy”, J. Clean. Prod., 260:121092, (2017).
  • [26] Bejan, A., “Advanced Engineering Thermodynamics”, 978-1-119-28104-7, 4th Edition. (2016).
  • [27] K. Tae, H. Cho, R. Luck, P.J. Mago., “Modeling of reciprocating internal combustion engines for power generation and heat recovery”, Appl. Energy., 102: 327-335, (2013).
  • [28] Xu P, Jin Y, Cheng Y., “Thermodynamic analysis of the gasification of municipal solid waste”, Engineering, 3:416-22, (2017).
  • [29] Prins MJ, Ptasinski KJ, Janssen FJJG., “Thermodynamics of gas-char reactions: first and second law analysis”, Chemical Engineering Science, 58:13– 16, (2003).
  • [30] Manatura K, Lu J-H, Wu K-T, Hsu H-T., “Exergy analysis on torrefied rice husk pellet in fluidized bed gasification”, Appl Therm Eng, 111:1016-24, (2017).
  • [31] N.S. Barman, S. Ghosh, S. De, “Gasification of biomass in a fixed bed downdraft gasifier - a realistic model including tar”, Bioresour. Technol., 107:505–511, (2012).
  • [32] Boateng AA, Mullen CA, Osgood-Jacobs L, Carlson P, Macken N., “Mass balance, energy, and exergy analysis of bio-oil production by fast pyrolysis”, Trans Am Soc Mech Eng J ENERGY Resour Technol, 134:04-2001, (2012).
  • [33] Souza-Santos ML., “Solid fuels combustion and gasification: modeling”, Simulation, and Equipment Operation, New York, (2004).
  • [34] Basu, P., “Biomass Gasifcation and Pyrolysis: Practical Design and Theory”, Academic Press, Burlington, (2010).
  • [35] Dincer I, Rosen MA., “Exergy as a driver for achieving sustainability” , Int J Green Energy, 1: 1-19, (2004).
  • [36] Szargut J., “Exergy Method: Technical and Ecological Applications”, WIT Press.,(2005).
  • [37] Wang J-J, Yang K, Xu Z-L, Fu C., “Energy and exergy analyses of an integrated CCHP system with biomass air gasification”, Appl Energy, 142:317-27, (2015).
  • [38] Y. A. Çengel, M. A. Boles, Thermodynamics: an engineering approach, McGraw-Hill Higher Education, (2006).
  • [39] Szargut J, Morris DR, Steward FR., Exergy analysis of thermal, chemical and metallurgical processes, Hemisphere Publishing, New York, (1988).
  • [40] K.G. Mansaray, A.E. Ghaly, A.M. Al-Taweel, F. Hamdullahpur, V.I. Ugursal, “Air gasification of rice husk in a dual distributor type fluidized bed gasifier”, Biomass Bioenergy, 17:315-332, (1999).
  • [41] Özbay, G., & Kökten, E. S. “ Modeling of Bio-Oil Production by Pyrolysis of Woody Biomass: Artificial Neural Network Approach.”, Politeknik Dergisi, 23(4), 1255-1264.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Pinar Büyük 0000-0002-5821-7865

Ahmet Eryaşar 0000-0003-4865-4049

Erken Görünüm Tarihi 8 Ağustos 2024
Yayımlanma Tarihi
Gönderilme Tarihi 18 Kasım 2022
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Büyük, P., & Eryaşar, A. (2024). ENERGY AND EXERGY ANALYSIS OF GREEN HYDROGEN PRODUCTION. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1206392
AMA Büyük P, Eryaşar A. ENERGY AND EXERGY ANALYSIS OF GREEN HYDROGEN PRODUCTION. Politeknik Dergisi. Published online 01 Ağustos 2024:1-1. doi:10.2339/politeknik.1206392
Chicago Büyük, Pinar, ve Ahmet Eryaşar. “ENERGY AND EXERGY ANALYSIS OF GREEN HYDROGEN PRODUCTION”. Politeknik Dergisi, Ağustos (Ağustos 2024), 1-1. https://doi.org/10.2339/politeknik.1206392.
EndNote Büyük P, Eryaşar A (01 Ağustos 2024) ENERGY AND EXERGY ANALYSIS OF GREEN HYDROGEN PRODUCTION. Politeknik Dergisi 1–1.
IEEE P. Büyük ve A. Eryaşar, “ENERGY AND EXERGY ANALYSIS OF GREEN HYDROGEN PRODUCTION”, Politeknik Dergisi, ss. 1–1, Ağustos 2024, doi: 10.2339/politeknik.1206392.
ISNAD Büyük, Pinar - Eryaşar, Ahmet. “ENERGY AND EXERGY ANALYSIS OF GREEN HYDROGEN PRODUCTION”. Politeknik Dergisi. Ağustos 2024. 1-1. https://doi.org/10.2339/politeknik.1206392.
JAMA Büyük P, Eryaşar A. ENERGY AND EXERGY ANALYSIS OF GREEN HYDROGEN PRODUCTION. Politeknik Dergisi. 2024;:1–1.
MLA Büyük, Pinar ve Ahmet Eryaşar. “ENERGY AND EXERGY ANALYSIS OF GREEN HYDROGEN PRODUCTION”. Politeknik Dergisi, 2024, ss. 1-1, doi:10.2339/politeknik.1206392.
Vancouver Büyük P, Eryaşar A. ENERGY AND EXERGY ANALYSIS OF GREEN HYDROGEN PRODUCTION. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.