Araştırma Makalesi
BibTex RIS Kaynak Göster

Sabit Uydu Güneş Panellerinde Güç Üretiminin Sürdürülebilirliği için Fotovoltaik Dizilerin Makine Öğrenimi Kullanılarak Analizi ve Modellenmesi

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1377988

Öz

Sabit uydu güneş panelleri, uzay tabanlı sistemler için hayati enerji kaynaklarıdır. Enerji üretimlerini anlamak ve performanslarını doğru bir şekilde modellemek uydu tasarımı, üretimi ve operasyon optimizasyonu için çok önemlidir. Bu çalışma, sabit uydulardaki değişen koşullara yanıt olarak güneş paneli gücünün nasıl dalgalandığını araştırmaktadır. Zaman içindeki bu güç değişkenliğini etkili bir şekilde modellemek için sinir ağlarını kullanan bir yöntem sunulmuştur. Bunun için, hem tek girişli hem de geri beslemeli altı girişli konfigürasyonlardan faydalanan, dışsal girişlere sahip doğrusal olmayan otoregresif sinir ağları kullanıldı. Gerçek bir uydu analizine yönelik kapsamlı çözüm olarak, 0,0477'lik Ortalama Karesel Hata (MSE) ve 0,9999'luk bir regresyon değeri sağlar ve bu olağanüstü performansa işaret etmektedir. Bu sonuçlar, tahmin edilen ve gerçek güç değerleri arasında güçlü bir korelasyonu doğrulayarak, sabit uydularda güneş paneli güç üretiminin dinamiklerini yakalamada sinir ağı tabanlı yaklaşımımızın doğruluğunu göstermektedir. Uydu operatörleri, güneş paneli tarafından üretilen gücün etkili bir şekilde izlenmesi ve tahmin edilmesi için bu tekniği kullanabileceklerdir.

Etik Beyan

Bu makalenin yazar(lar)ı çalışmalarında kullandıkları materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler.

Kaynakça

  • [1] Verduci, R., Romano, V., Brunetti, G., Nia, N. Y., Carlo, A. D., Ciminelli, C., “Solar energy in space applications: review and technology perspectives”. Advanced Energy Materials, 2200125, 12(29), (2022).
  • [2] Jones, P. A. and Spence, B. R., "Spacecraft solar array technology trends". IEEE Aerospace and Electronic Systems Magazine, vol. 26, no. 8, pp. 17-28, (2011).
  • [3] Plis E. A. et al., "Effect of simulated geo environment on the properties of solar panel cover glasses,". IEEE Transactions on Plasma Science, vol. 49, no. 5, pp. 1679-1685, (2021).
  • [4] Cho M. et al., "Spacecraft Charging analysis of large GEO satellites using MUSCAT," IEEE Transactions on Plasma Science, vol. 40, no. 4, pp. 1248-1256, (2012).
  • [5] Cho, M. R., Ramasamy, T., Matsumoto, K., Toyoda, Y., Takahashi, M., “Laboratory tests on 110 V solar arrays in a simulated geosynchronous orbit environment,” J. Spacecraft Rocket, vol. 40, no. 2, pp. 211–220, (2003).
  • [6] O. Safak, “Structural design and analysis of a solar array substrate for a GEO satellite,” Projecte Final de Màster Oficial, UPC, Escola d'Enginyeria de Telecomunicació i Aeroespacial de Castelldefels, Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, (2013).
  • [7] Bermudez, A., Voarino, P., Raccurt, O., “Environments, needs and opportunities for future space photovoltaic power generation: A review”, Applied Energy, Volume 290, 116757, (2021).
  • [8] Sproewitz, T., Banik, U., Grundmann, JT. et al. “Concept for a Gossamer solar power array using thin-film photovoltaics.” CEAS Space J 12, 125–135 (2020).
  • [9] Muhammad Z., Ekundayo O., “Simulation of photovoltaic (PV) power system performance of spacecraft in geostationary orbit using a prototype model.”, IOSR Journal of Applied Physics (IOSR-JAP), Volume 6, Issue 3 Ver. II, pp 20-26. (2014).
  • [10] Chetty, P., Vasagam, R., "Enhanced Power Generation by Optical Solar Reflectors on Geostationary Spinners," IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, no. 1, pp. 119-124, Jan. (1979).
  • [11] Karadağ B., Arı Ali, Karadağ, M. “Derin öğrenme modellerinin sinirsel stil aktarımı performanslarının karşılaştırılması.”, Politeknik Dergisi, 24(4), 1611-1622., (2021).
  • [12] Aslay F., Özen, Ü. “Estimating soil temperature with artificial neural networks using meteorological parameters.”, Journal Of Polytechnic-Politeknik Dergisi, 16(4), (2013).
  • [13] Kayci B., Demir B. E., Demir, F. (2023). Deep learning based fault detection and diagnosis in photovoltaic system using thermal images acquired by UAV. Politeknik Dergisi, 1-1, (2023).
  • [14] Erdoğan, İ., Bilen, K., Kivrak, S. ” Experimental investigation of the efficiency of solar panel over which water film flows.”, Politeknik Dergisi, 1-1, (2023).
  • [15] Abood, A., “A comprehensive solar angles simulation and calculation using matlab”, International Journal of Energy and Environment, 367, 6(4), (2015).
  • [16] Ribah, A. Z., Ramayanti, S., “Power produced analysis of solar arrays in nadir pointing mode for low-earth equatorial micro-satellite conceptual design”, In IOP Conference Series: Earth and Environmental Science (Vol. 284, No. 1, p. 012048). IOP Publishing, (2019).
  • [17] Maini, A. K., Agrawal, V. “Satellite technology: principles and applications”, John Wiley & Sons. (2011).
  • [18] Demirel, S., “Haberleşme uydusunun elektrik güç sisteminin modellenmesi ve analizi” (Doctoral dissertation, Sakarya Universitesi, Turkey, (2017).
  • [19] D'Accolti, G., Beltrame, G., Ferrando, E., Riva, S., Vallini, L., “One year in-orbit data of the MITA Ga As on Ge solar array” In Space Power, Vol. 502, p. 719, (2002).
  • [20] Sözbir, N., Bulut, M. “Prediction of the Solar Array Temperatures of Geostationary Earth Orbit Satellite by Using Analytical Methods.”. 9th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, , pp. 369-372, (2019).
  • [21] Kirkpatrick, D., “Space mission analysis and design”, (Vol. 8). J. R. Wertz, W. J. Larson, & D. Klungle (Eds.). Torrance: Microcosm. (1999).
  • [22] Cao, M., Zhang, T., Liu, Y., Yu, W., “A performance degradation model of solar cells in an on-orbit resource satellite based on peak currents”, Solar Energy, 189, 26-34, (2019).
  • [23] Khashei, M., Bijari, M., “An artificial neural network (p,d,q) model for time series forecasting”. Expert Systems With Applications, 37(1), 479-489. (2010).
  • [24] Lee, J., Kim, E., & Shin, K. G., “Design and management of satellite power systems”. In 2013 IEEE 34th Real-Time Systems Symposium, pp. 97-106, (2013).
  • [25] Olawoyin, A., Chen, Y.” Predicting the future with artificial neural network”. Procedia Computer Science, 140, 383-392. (2018).
  • [26] Abdelkhalek, H. S., Medhat, H., Ziedan, I., Amal, M., “Simulation and prediction for a satellite temperature sensors based on artificial neural network”. Journal of Aerospace Technology and Management, 11. (2019).
  • [27] El-madany, H. T., Fahmy, F. H., El-Rahman, N. M., & Dorrah, H. T., “Spacecraft power system controller based on neural network”. Acta Astronautica, 69(7-8), 650-657, (2011).
  • [28] Hota, H. S., Handa, R., Shrivas, A. K. “Time series data prediction using sliding window based RBF neural network”. International Journal of Computational Intelligence Research, 13(5), 1145-1156, (2017).

Analysis and Modeling of Photovoltaic Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels using Machine Learning

Yıl 2025, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1377988

Öz

Geostationary satellite solar panels are vital energy sources for space-borne systems. Understanding their power generation and accurately modeling performance is crucial for satellite design, manufacturing, and operation optimization. This study explores how solar panel power fluctuates in response to varying conditions on geostationary satellites. We present a method employing neural networks to model this power variability over time effectively. To achieve this, we employ non-linear autoregressive neural networks with exogenous inputs, utilizing both single-input and six-input configurations with feedback. Our comprehensive analysis yields a Mean Squared Error (MSE) of 0.0477 and a regression value of 0.9999, indicating exceptional performance. These results validate a strong correlation between predicted and actual power values, underscoring the accuracy of our neural networkbased approach in capturing the dynamics of solar panel power generation on geostationary satellites. Satellite operators can employ this technique for effective monitoring and forecasting of solar panel-generated power.

Etik Beyan

The author(s) of this article declare that the materials and methods used in this study do not require ethical committee permission and/or legal-special permission.

Kaynakça

  • [1] Verduci, R., Romano, V., Brunetti, G., Nia, N. Y., Carlo, A. D., Ciminelli, C., “Solar energy in space applications: review and technology perspectives”. Advanced Energy Materials, 2200125, 12(29), (2022).
  • [2] Jones, P. A. and Spence, B. R., "Spacecraft solar array technology trends". IEEE Aerospace and Electronic Systems Magazine, vol. 26, no. 8, pp. 17-28, (2011).
  • [3] Plis E. A. et al., "Effect of simulated geo environment on the properties of solar panel cover glasses,". IEEE Transactions on Plasma Science, vol. 49, no. 5, pp. 1679-1685, (2021).
  • [4] Cho M. et al., "Spacecraft Charging analysis of large GEO satellites using MUSCAT," IEEE Transactions on Plasma Science, vol. 40, no. 4, pp. 1248-1256, (2012).
  • [5] Cho, M. R., Ramasamy, T., Matsumoto, K., Toyoda, Y., Takahashi, M., “Laboratory tests on 110 V solar arrays in a simulated geosynchronous orbit environment,” J. Spacecraft Rocket, vol. 40, no. 2, pp. 211–220, (2003).
  • [6] O. Safak, “Structural design and analysis of a solar array substrate for a GEO satellite,” Projecte Final de Màster Oficial, UPC, Escola d'Enginyeria de Telecomunicació i Aeroespacial de Castelldefels, Departament de Ciència dels Materials i Enginyeria Metal·lúrgica, (2013).
  • [7] Bermudez, A., Voarino, P., Raccurt, O., “Environments, needs and opportunities for future space photovoltaic power generation: A review”, Applied Energy, Volume 290, 116757, (2021).
  • [8] Sproewitz, T., Banik, U., Grundmann, JT. et al. “Concept for a Gossamer solar power array using thin-film photovoltaics.” CEAS Space J 12, 125–135 (2020).
  • [9] Muhammad Z., Ekundayo O., “Simulation of photovoltaic (PV) power system performance of spacecraft in geostationary orbit using a prototype model.”, IOSR Journal of Applied Physics (IOSR-JAP), Volume 6, Issue 3 Ver. II, pp 20-26. (2014).
  • [10] Chetty, P., Vasagam, R., "Enhanced Power Generation by Optical Solar Reflectors on Geostationary Spinners," IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, no. 1, pp. 119-124, Jan. (1979).
  • [11] Karadağ B., Arı Ali, Karadağ, M. “Derin öğrenme modellerinin sinirsel stil aktarımı performanslarının karşılaştırılması.”, Politeknik Dergisi, 24(4), 1611-1622., (2021).
  • [12] Aslay F., Özen, Ü. “Estimating soil temperature with artificial neural networks using meteorological parameters.”, Journal Of Polytechnic-Politeknik Dergisi, 16(4), (2013).
  • [13] Kayci B., Demir B. E., Demir, F. (2023). Deep learning based fault detection and diagnosis in photovoltaic system using thermal images acquired by UAV. Politeknik Dergisi, 1-1, (2023).
  • [14] Erdoğan, İ., Bilen, K., Kivrak, S. ” Experimental investigation of the efficiency of solar panel over which water film flows.”, Politeknik Dergisi, 1-1, (2023).
  • [15] Abood, A., “A comprehensive solar angles simulation and calculation using matlab”, International Journal of Energy and Environment, 367, 6(4), (2015).
  • [16] Ribah, A. Z., Ramayanti, S., “Power produced analysis of solar arrays in nadir pointing mode for low-earth equatorial micro-satellite conceptual design”, In IOP Conference Series: Earth and Environmental Science (Vol. 284, No. 1, p. 012048). IOP Publishing, (2019).
  • [17] Maini, A. K., Agrawal, V. “Satellite technology: principles and applications”, John Wiley & Sons. (2011).
  • [18] Demirel, S., “Haberleşme uydusunun elektrik güç sisteminin modellenmesi ve analizi” (Doctoral dissertation, Sakarya Universitesi, Turkey, (2017).
  • [19] D'Accolti, G., Beltrame, G., Ferrando, E., Riva, S., Vallini, L., “One year in-orbit data of the MITA Ga As on Ge solar array” In Space Power, Vol. 502, p. 719, (2002).
  • [20] Sözbir, N., Bulut, M. “Prediction of the Solar Array Temperatures of Geostationary Earth Orbit Satellite by Using Analytical Methods.”. 9th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey, , pp. 369-372, (2019).
  • [21] Kirkpatrick, D., “Space mission analysis and design”, (Vol. 8). J. R. Wertz, W. J. Larson, & D. Klungle (Eds.). Torrance: Microcosm. (1999).
  • [22] Cao, M., Zhang, T., Liu, Y., Yu, W., “A performance degradation model of solar cells in an on-orbit resource satellite based on peak currents”, Solar Energy, 189, 26-34, (2019).
  • [23] Khashei, M., Bijari, M., “An artificial neural network (p,d,q) model for time series forecasting”. Expert Systems With Applications, 37(1), 479-489. (2010).
  • [24] Lee, J., Kim, E., & Shin, K. G., “Design and management of satellite power systems”. In 2013 IEEE 34th Real-Time Systems Symposium, pp. 97-106, (2013).
  • [25] Olawoyin, A., Chen, Y.” Predicting the future with artificial neural network”. Procedia Computer Science, 140, 383-392. (2018).
  • [26] Abdelkhalek, H. S., Medhat, H., Ziedan, I., Amal, M., “Simulation and prediction for a satellite temperature sensors based on artificial neural network”. Journal of Aerospace Technology and Management, 11. (2019).
  • [27] El-madany, H. T., Fahmy, F. H., El-Rahman, N. M., & Dorrah, H. T., “Spacecraft power system controller based on neural network”. Acta Astronautica, 69(7-8), 650-657, (2011).
  • [28] Hota, H. S., Handa, R., Shrivas, A. K. “Time series data prediction using sliding window based RBF neural network”. International Journal of Computational Intelligence Research, 13(5), 1145-1156, (2017).
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nöral Ağlar, Fotovoltaik Güç Sistemleri, Uydu, Uzay Aracı ve Füze Tasarımı ve Testleri
Bölüm Araştırma Makalesi
Yazarlar

İbrahim Öz 0000-0003-4593-917X

Mehmet Bulut 0000-0003-3998-1785

Erken Görünüm Tarihi 16 Ocak 2025
Yayımlanma Tarihi
Gönderilme Tarihi 18 Ekim 2023
Kabul Tarihi 1 Eylül 2024
Yayımlandığı Sayı Yıl 2025 ERKEN GÖRÜNÜM

Kaynak Göster

APA Öz, İ., & Bulut, M. (2025). Analysis and Modeling of Photovoltaic Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels using Machine Learning. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1377988
AMA Öz İ, Bulut M. Analysis and Modeling of Photovoltaic Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels using Machine Learning. Politeknik Dergisi. Published online 01 Ocak 2025:1-1. doi:10.2339/politeknik.1377988
Chicago Öz, İbrahim, ve Mehmet Bulut. “Analysis and Modeling of Photovoltaic Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels Using Machine Learning”. Politeknik Dergisi, Ocak (Ocak 2025), 1-1. https://doi.org/10.2339/politeknik.1377988.
EndNote Öz İ, Bulut M (01 Ocak 2025) Analysis and Modeling of Photovoltaic Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels using Machine Learning. Politeknik Dergisi 1–1.
IEEE İ. Öz ve M. Bulut, “Analysis and Modeling of Photovoltaic Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels using Machine Learning”, Politeknik Dergisi, ss. 1–1, Ocak 2025, doi: 10.2339/politeknik.1377988.
ISNAD Öz, İbrahim - Bulut, Mehmet. “Analysis and Modeling of Photovoltaic Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels Using Machine Learning”. Politeknik Dergisi. Ocak 2025. 1-1. https://doi.org/10.2339/politeknik.1377988.
JAMA Öz İ, Bulut M. Analysis and Modeling of Photovoltaic Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels using Machine Learning. Politeknik Dergisi. 2025;:1–1.
MLA Öz, İbrahim ve Mehmet Bulut. “Analysis and Modeling of Photovoltaic Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels Using Machine Learning”. Politeknik Dergisi, 2025, ss. 1-1, doi:10.2339/politeknik.1377988.
Vancouver Öz İ, Bulut M. Analysis and Modeling of Photovoltaic Arrays for Sustaining Power Generation in Geostationary Satellite Solar Panels using Machine Learning. Politeknik Dergisi. 2025:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.