Derleme
BibTex RIS Kaynak Göster

Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1525347

Öz

Sürdürülebilirliğin arttırılmasın yolu karbon salınım değerlerinin azaltılmasından geçmektedir. Fosil kaynaklı enerji üretim yöntemlerinin kullanımlarının azaltıması ile karbon salınımının azaltılabilmesi, yenilenebilir enerji üretim sistemlerine geçişle sağlanması hedeflenmektedir. Ancak yenilenebilir sistemler enerji depolama uygulamaları olmadan kullanılamamaktadır. Enerji depolama sistemlerinin önemi ön plana çıkmaktadır. Enerji depolama sistemleri arasında lityum iyon bataryalar, 1990 yılında ticarileştikten sonra yaygın olarak kullanılsa da; lityum kaynaklarının miktarı, üretimi ve lityum iyon bataryaların güvenlik sorunları sebebiyle yeni arayışlara devam edilmektedir. Yeni arayışlar içerisinde farklı iyon bataryalardan sulu çinko iyon batarya sistemleri yüksek hacimsel kapasitesi, daha güvenili olması ve uygun maliyetli ile ön plana çıkmaktadır.
Bu çalışmada; yeni nesil iyon bataryalardan olan çinko iyon bataryaların çalışma prensibi ve kullanılan mangan oksit katot aktif malzemeleri, üretim-özellik-performans ilişkisi üzerine bir derleme gerçekleştirilmiştir.

Destekleyen Kurum

İstanbul Teknik Üniversitesi

Proje Numarası

MGA-2024-44799

Teşekkür

MGA-2024-44799 numaralı projemizi destekleyen İstanbul Teknik Üniversitesine teşekkürlerimizi sunarız.

Kaynakça

  • [1] Gür, T. M., “Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies”, Prog Energy Combust Sci, 89 (2022).
  • [2] Kozak, M., and Kozak, Ş. “Enerji Depolama Yöntemleri̇”, Uluslararası Teknolojik Bilimler Dergisi, 4(2), 17–29 (2012).
  • [3] Dai, H., Jiang, B., Hu, X., Lin, X., Wei, X., and Pecht, M., “Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends”, Renewable and Sustainable Energy Reviews, 138 (2021).
  • [4] Li, M., Lu, J., Chen, Z., and Amine, K., “30 Years of Lithium-Ion Batteries”, Advanced Materials, 30(33), 1–24 (2018).
  • [5] Olabi, A. G., Onumaegbu, C., Wilberforce, T., Ramadan, M., Abdelkareem, M. A., and Al – Alami, A. H., “Critical review of energy storage systems”, Energy, 214, 118987 (2021).
  • [6] Manthiram, A., “An Outlook on Lithium Ion Battery Technology”, ACS Cent Sci, 3(10), 1063–1069 (2017).
  • [7] Li, M., Lu, J., Chen, Z., and Amine, K., “30 Years of Lithium-Ion Batteries”, Advanced Materials, 30(33), 1–24 (2018).
  • [8] Nzereogu, P. U., Omah, A. D., Ezema, F. I., Iwuoha, E. I., and Nwanya, A. C., “Anode materials for lithium-ion batteries: A review”, Applied Surface Science Advances, 9, 100233 (2022).
  • [9] Houache, M. S. E., Yim, C. H., Karkar, Z., and Abu-Lebdeh, Y., “On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review”, Batteries, 8(7) (2022).
  • [10] Murdock, B. E., Toghill, K. E., and Tapia-Ruiz, N., “A Perspective on the Sustainability of Cathode Materials used in Lithium‐Ion”, Adv Energy Mater, 11(39) (2021).
  • [11] Spears, B. M., Brownlie, W. J., Cordell, D., Hermann, L., and Mogollón, J. M., “Concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector”, Commun Mater, 3(1), 9–10 (2022).
  • [12] https://www.rsc.org/periodic-table/ “Periodic Table – Royal Society of Chemistry”,(2024).
  • [13] Bartlett, N. J., “Critical materials strategy for clean energy technologies”, Critical Materials Strategy for Clean Energy Technologies, 1–170 (2011).
  • [14] https://www.catl.com/en/news/6013.html “CATL’s First Sodium-ion Battery to Power Chery EV Models”,(2024).
  • [15] https://www.energy-storage.news/world-first-grid-scale-sodium-ion-battery-project-in-china-enters-commercial-operation/ “‘World-first’ grid-scale sodium-ion battery project in China launched”, (2024).
  • [16] Vaalma, C., Buchholz, D., Weil, M., and Passerini, S., “A cost and resource analysis of sodium-ion batteries”, Nat Rev Mater, 3 (2018).
  • [17] Xue, T. and Fan, H. J., “From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story”, Journal of Energy Chemistry, 54, 194–201 (2021).
  • [18] Özsin, G., “Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme”, Politeknik Dergisi, 24(3), 1151–1170 (2021).
  • [19] Yu, C., Ganapathy, S., Eck, E. R. H. V., Wang, H., Basak, S., Li, Z., and Wagemaker, M., “Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface”, Nat Commun, 8(1), pp. 1–9 (2017).
  • [20] Zheng, J., Li, W., Liu, X., Zhang, J., Feng, X., and Chen, W., “Progress in Gel Polymer Electrolytes for Sodium-Ion Batteries”, Energy and Environmental Materials, 6(4) (2023).
  • [21] Shi, W., Lee, W. S. V., Xue, J. “Recent Development of Mn‐based Oxides as Zinc‐Ion Battery Cathode” ChemSusChem 14(7), 1634-1658 (2021).
  • [22] Liang, Y. and Yao, Y., “Designing modern aqueous batteries”, Nat Rev Mater, 8(2), 109–122 (2023).
  • [23] Chao, D., Zhou, W., Xie, F., Ye, C., Li, H., Jaroniec, M., and Qiao, S. Z., “Roadmap for advanced aqueous batteries: From design of materials to applications”, Sci Adv, 6(21) (2020).
  • [24] Peljo, P. and Girault, H. H., “Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception”, Energy Environ Sci, 11(9), 2306–2309 (2018).
  • [25] Huang, M., Li, M., Niu, C., Li, Q., and Mai, L., “Recent Advances in Rational Electrode Designs for High-Performance Alkaline Rechargeable Batteries”, Adv Funct Mater, 29(11) (2019).
  • [26] Luo, H., Liu, B., Yang, Z., Wan, Y., and Zhong, C., “The Trade-Offs in the Design of Reversible Zinc Anodes for Secondary Alkaline Batteries”, Electrochemical Energy Reviews, 5(1), pp. 187–210 (2022).
  • [27] Sharma, S., Sarma, P., Bordoloi, S., & Barman, P. “Estimation of Coulombic Efficiency of Lead Acid Battery for Range Determination of Electric Vehicle” 1st Conference on Power, Dielectric and Energy Management at NERIST (ICPDEN) 1-6 (2015).
  • [28] Zhang, T., Tang, Y., Guo, S., Cao, X., Pan, A., Fang, G., Zhou, J., and Liang, S., “Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review”, Energy Environ Sci, 13(12), 4625–4665 (2020).
  • [29] Tang, B., Shan, L., Liang, S., and Zhou, J., “Issues and opportunities facing aqueous zinc-ion batteries”, Energy Environ Sci, 12(11), 3288–3304 (2019).
  • [30] Li, G., Sun, L., Zhang, S., Zhang, C., Jin, H., Davey, K., Liang, G., Liu, S., Mao, J., and Guo, Z., “Developing Cathode Materials for Aqueous Zinc Ion Batteries: Challenges and Practical Prospects”, Adv Funct Mater 34(5), 2301291 (2023).
  • [31] James F.A.L.J.D. “Instruments from Scratch? Humphry Davy, Michael Faraday and the Construction of Knowledge” Bulletin of the Scientific Instrument Society 148 (2021).
  • [32] Karunathilaka, S. A. G. R., Hampson, N. A., Leek, R., and Sinclair, T. J., “The Impedance of the Leclanch Cell. 1I. The Impedance of the Individual Cell Components” Journal of Applied Electrochemistry, 10, 603-609 (1980).
  • [33] Wang, Y., Wang, Z., Yang, F., Liu, S., Zhang, S., Mao, J., Guo, Z. “Electrolyte Engineering Enables High Performance Zinc‐Ion Batteries” Small, 18(43), 2107033 (2022).
  • [34] Liu, C., Xie, X., Lu, B., Zhou, J., and Liang, S., “Electrolyte Strategies toward Better Zinc-Ion Batteries”, ACS Energy Lett, 6(3), 1015–1033 (2021).
  • [35] Li, M., Li, Z., Wang, X., Meng, J., Liu, X., Wu, B., Han, C., and Mai, L., “Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: From electrolytes to electrode materials”, Energy Environ Sci, 14(7), 3796–3839 (2021).
  • [36] Krężel, A. and Maret, W., “The biological inorganic chemistry of zinc ions”, Arch Biochem Biophys, 611, 3–19 (2016).
  • [37] Zhao, X., Zhang, X., Dong, N., Yan, M., Zhang, F., Mochizuki, K., and Pan, H., “Advanced Buffering Acidic Aqueous Electrolytes for Ultra-Long Life Aqueous Zinc-Ion Batteries”, Small, 18(21) (2022).
  • [38] Liu, C., Xie, X., Lu, B., Zhou, J., and Liang, S., “Electrolyte Strategies toward Better Zinc-Ion Batteries”, ACS Energy Lett, 6(3), 1015–1033 (2021).
  • [39] Ma, R., Xu, Z., Wang, X. “Energy Environ Materials - 2022 - Ma - Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zinc‐Ion Batteries” Energy & Environmental Materials, 6(5), e12464 (2023).
  • [40] Han, Q., Chi, X., Zhang, S., Liu, Y., Zhou, B., Yang, J., and Liu, Y., “Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries”, J Mater Chem A Mater, 6(45), 23046–23054 (2018).
  • [41] Zeng, Y., Zhang, X., Meng, Y., Yu, M., Yi, J., Wu, Y., Lu, X., and Tong, Y., “Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi-Solid-State Zn–MnO2 Battery”, Advanced Materials, 29(26), 1–7 (2017).
  • [42] Huang, X., He, R., Li, M., Chee, M. O. L., Dong, P., and Lu, J., “Functionalized separator for next-generation batteries”, Materials Today, 41, 143–155 (2020).
  • [43] Fang, Y., Xie, X., Zhang, B., Chai, Y., Lu, B., Liu, M., Liang, S. “Regulating Zinc Deposition Behaviors by the Conditioner of PAN Separator for Zinc‐Ion” Advanced Functional Materials, 32(14), 2109671 (2022).
  • [44] Zong, Y., He, H., Wang, Y., Wu, M., Ren, X., Bai, Z., Dou, S. X. “Functionalized Separator Strategies toward Advanced Aqueous Zinc‐Ion Batteries” Advanced Energy Materials, 13(20), 2300403 (2023).
  • [45] Zhou, T., Zhu, L., Xie, L., Han, Q., Yang, X., Chen, L., Wang, G., and Cao, X., “Cathode materials for aqueous zinc-ion batteries: A mini review”, J Colloid Interface Sci, 605, 828–850 (2022).
  • [46] Lu, W., Xie, C., Zhang, H., and Li, X., “Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries”, ChemSusChem, 11(23), 3996–4006 (2018).
  • [47] Yang, Z., Zhang, Q., Li, W., Xie, C., Wu, T., Hu, C., Tang, Y., and Wang, H., “A Semi-solid Zinc Powder-based Slurry Anode for Advanced Aqueous Zinc-ion Batteries”, Angewandte Chemie - International Edition, 62(3) (2023).
  • [48] Li, H., Xu, C., Han, C., Chen, Y., Wei, C., Li, B., and Kang, F., “Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries”, J Electrochem Soc, 162(8), A1439–A1444 (2015).
  • [49] Zhao, Z., Zhao, J., Hu, Z., Li, J., Li, J., Zhang, Y., Wang, C., and Cui, G., “Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase”, Energy Environ Sci, 12(6), 1938–1949 (2019).
  • [50] Xia, A., Pu, X., Tao, Y., Liu, H., and Wang, Y., “Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries”, Appl Surf Sci, 481, 852–859 (2019).
  • [51] Wang, T., Li, C., Xie, X., Lu, B., He, Z., Liang, S., and Zhou, J., “Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives”, ACS Nano, 14(12), 16321–16347 (2020).
  • [52] Zhang, N., Chen, X., Yu, M., Niu, Z., Cheng, F., and Chen, J., “Materials chemistry for rechargeable zinc-ion batteries”, Chem Soc Rev, 49(13), 4203–4219 (2020).
  • [53] Mathew, V., Sambandam, B., Kim, S., Kim, S., Park, S., Lee, S., Alfaruqi, M. H., Soundharrajan, V., Islam, S., Putro, D. Y., Hwang, J. Y., Sun, Y. K., and Kim, J., “Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments”, ACS Energy Lett, 5(7), 2376–2400 (2020).
  • [54] Wan, F. and Niu, Z., “Design Strategies for Vanadium‐based Aqueous Zinc‐Ion Batteries”, Angewandte Chemie, 131(46), 16508–16517 (2019).
  • [55] Bahlawane, N. and Lenoble, D., “Vanadium oxide compounds: Structure, properties, and growth from the gas phase”, Chemical Vapor Deposition, 20(7–9), 299–311 (2014).
  • [56] Zhou, T., Han, Q., Xie, L., Yang, X., Zhu, L., and Cao, X., “Recent Developments and Challenges of Vanadium Oxides (VxOy) Cathodes for Aqueous Zinc-Ion Batteries”, Chemical Record, 22(4) (2022).
  • [57] Zhang, M., Liang, R., Or, T., Deng, Y.-P., Yu, A., and Chen, Z., “Recent Progress on High‐Performance Cathode Materials for Zinc‐Ion Batteries”, Small Struct, 2(2), 2000064 (2021).
  • [58] Zhang, N., Chen, X., Yu, M., Niu, Z., Cheng, F., and Chen, J., “Materials chemistry for rechargeable zinc-ion batteries”, Chem Soc Rev, 49(13), 4203–4219 (2020).
  • [59] Li, Z., Liu, T., Meng, R., Gao, L., Zou, Y., Peng, P., Shao, Y., and Liang, X., “Insights into the Structure Stability of Prussian Blue for Aqueous Zinc Ion Batteries”, Energy and Environmental Materials, 4(1), 111–116 (2021).
  • [60] Zhou, L. F., Gao, X. W., Du, T., Gong, H., Liu, L. Y., and Luo, W. Bin, “New Phosphate Zn2Fe(PO4)2Cathode Material for Nonaqueous Zinc Ion Batteries with Long Life Span”, ACS Appl Mater Interfaces, 14(7), 8888–8895 (2022).
  • [61] Jiang, P., Kuang, Q., Li, Y., Wei, J., Huang, M., Fan, Q., Dong, Y., and Zhao, Y., “Synthesis, structure and electrochemical performance of hydrated zinc Iron phosphate as low-cost cathode material for aqueous zinc-ion batteries”, Solid State Ion, 412 (2024).
  • [62] Singh, D., Hu, Y., Meena, S. S., Vengarathody, R., Fichtner, M., and Barpanda, P., “Iron-based fluorophosphate Na2FePO4F as a cathode for aqueous zinc-ion batteries”, Chemical Communications, 59(97), 14391–14394 (2023).
  • [63] Gilkes, R. J. and McKenzie, R. M., “Geochemistry and Mineralogy of Manganese in Soils”, In Manganese in Soils and Plants, Springer Netherlands, 23–35 (1988).
  • [64] Dzieciuch, M. A., Gupta}, N., and Wroblowa, H. S., “Rechargeable Cells with Modified MnO2 Cathodes” Journal of The Electrochemical Society, 135(10), 2415 (1988).
  • [65] Wei, W., Cui, X., Chen, W., and Ivey, D. G., “Manganese oxide-based materials as electrochemical supercapacitor electrodes”, Chem Soc Rev, 40(3), 1697–1721 (2011).
  • [66] Bélanger, D., Brousse, T., and Long, J. W., “Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors” The Electrochemical Society Interface, 17(1), 49 (2008).
  • [67] Shoji, T., Hishinuma, M., and Yamamoto, T., “Zinc-Manganese Dioxide Galvanic Cell Using Zinc Sulphate as Electrolyte. Rechargeability of the Cell” Journal Of Applied Electrochemistry, 18, 521-526(1988).
  • [68] Mallick, S. and Raj, C. R., “Aqueous Rechargeable Zn-ion Batteries: Strategies for Improving the Energy Storage Performance”, ChemSusChem, 14(9), 1987–2022 (2021).
  • [69] Zhao, Y., Zhu, Y., and Zhang, X., “Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries”, InfoMat, 2(2), 237–260 (2020).
  • [70] Devaraj, S. and Munichandraiah, N., “Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties”, Journal of Physical Chemistry C, 112(11), 4406–4417 (2008).
  • [71] Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K. S., Nie, Z., Wang, C., Yang, J., Li, X., Bhattacharya, P., Mueller, K. T., and Liu, J., “Reversible aqueous zinc/manganese oxide energy storage from conversion reactions”, Nat Energy, 1 (2016).
  • [72] Alfaruqi, M. H., Mathew, V., Gim, J., Kim, S., Song, J., Baboo, J. P., Choi, S. H., and Kim, J., “Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system”, Chemistry of Materials, 27(10), 3609–3620 (2015).
  • [73] Wang, L., Cao, X., Xu, L., Chen, J., and Zheng, J., “Transformed Akhtenskite MnO2 from Mn3O4 as Cathode for a Rechargeable Aqueous Zinc Ion Battery”, ACS Sustain Chem Eng, 6(12), 16055–16063 (2018).
  • [74] Liu, N., Li, B., He, Z., Dai, L., Wang, H., and Wang, L., “Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries”, Journal of Energy Chemistry, 59, 134–159 (2021).
  • [75] Zhang, N., Cheng, F., Liu, J., Wang, L., Long, X., Liu, X., Li, F., and Chen, J., “Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities”, Nat Commun, 8(1), 1–9 (2017).
  • [76] Tang, F., Gao, J., Ruan, Q., Wu, X., Wu, X., Zhang, T., Liu, Z., Xiang, Y., He, Z., and Wu, X., “Graphene-Wrapped MnO/C Composites by MOFs-Derived as Cathode Material for Aqueous Zinc ion Batteries”, Electrochim Acta, 353, 136570 (2020).
  • [77] Li, W., Gao, X., Chen, Z., Guo, R., Zou, G., Hou, H., Deng, W., Ji, X., and Zhao, J., “Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery”, Chemical Engineering Journal, 402, 125509 (2020).
  • [78] Zhu, C., Fang, G., Liang, S., Chen, Z., Wang, Z., Ma, J., Wang, H., Tang, B., Zheng, X., and Zhou, J., “Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery”, Energy Storage Mater, 24, 394–401 (2020).
  • [79] Wang, J., Wang, J. G., Liu, H., You, Z., Wei, C., and Kang, F., “Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries”, J Power Sources, 438, 226951 (2019).
  • [80] Jiao, Y., Kang, L., Berry-Gair, J., McColl, K., Li, J., Dong, H., Jiang, H., Wang, R., Corà, F., Brett, D. J. L., He, G., and Parkin, I. P., “Enabling stable MnO2matrix for aqueous zinc-ion battery cathodes”, J Mater Chem A Mater, 8(42), 22075–22082 (2020).
  • [81] Tang, F., He, T., Zhang, H., Wu, X., Li, Y., Long, F., Xiang, Y., Zhu, L., Wu, J., and Wu, X., “The MnO@N-doped carbon composite derived from electrospinning as cathode material for aqueous zinc ion battery”, Journal of Electroanalytical Chemistry, 873, 114368 (2020).
  • [82] Wang, J., Wang, J. G., Liu, H., Wei, C., and Kang, F., “Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries”, J Mater Chem A Mater, 7(22), 13727–13735 (2019).
  • [83] Li, Z., Huang, Y., Zhang, J., Jin, S., Zhang, S., and Zhou, H., “One-step synthesis of MnO:X/PPy nanocomposite as a high-performance cathode for a rechargeable zinc-ion battery and insight into its energy storage mechanism”, Nanoscale, 12(6), 4150–4158 (2020).
  • [84] Huang, J., Wang, Z., Hou, M., Dong, X., Liu, Y., Wang, Y., and Xia, Y., “Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery”, Nat Commun, 9(1), 1–8 (2018).
  • [85] Cai, Y., Chua, R., Huang, S., Ren, H., and Srinivasan, M., “Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery”, Chemical Engineering Journal, 396, 125221 (2020).
  • [86] Wu, Y., Fee, J., Tobin, Z., Shirazi-Amin, A., Kerns, P., Dissanayake, S., Mirich, A., and Suib, S. L., “Amorphous Manganese Oxides: An Approach for Reversible Aqueous Zinc-Ion Batteries”, ACS Appl Energy Mater, 3(2),1627–1633 (2020).
  • [87] Wang, J., Sun, X., Zhao, H., Xu, L., Xia, J., Luo, M., Yang, Y., and Du, Y., “Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by Rare Earth Doping”, Journal of Physical Chemistry C, 123(37), 22735–22741 (2019).
  • [88] Li, W., Gao, X., Chen, Z., Guo, R., Zou, G., Hou, H., Deng, W., Ji, X., and Zhao, J., “Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery”, Chemical Engineering Journal, 402, 125509 (2020).
  • [89] Zhang, Y., Liu, Y., Liu, Z., Wu, X., Wen, Y., Chen, H., Ni, X., Liu, G., Huang, J., and Peng, S., “MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries”, Journal of Energy Chemistry, 64, 23–32 (2022).
  • [90] Jiang, B., Xu, C., Wu, C., Dong, L., Li, J., and Kang, F., “Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life”, Electrochim Acta, 229, 422–428 (2017).
  • [91] Song, Y., Li, J., Qiao, R., Dai, X., Jing, W., Song, J., Chen, Y., Guo, S., Sun, J., Tan, Q., and Liu, Y., “Binder-free flexible zinc-ion batteries: one-step potentiostatic electrodeposition strategy derived Ce doped-MnO2 cathode”, Chemical Engineering Journal, 431(P4), 133387 (2022).
  • [92] Kataoka, F., Ishida, T., Nagita, K., Kumbhar, V., Yamabuki, K., and Nakayama, M., “Cobalt-Doped Layered MnO2 Thin Film Electrochemically Grown on Nitrogen-Doped Carbon Cloth for Aqueous Zinc-Ion Batteries”, ACS Appl Energy Mater, 3(5), 4720–4726 (2020).
  • [93] Zhang, Y., Deng, S., Luo, M., Pan, G., Zeng, Y., Lu, X., Ai, C., Liu, Q., Xiong, Q., Wang, X., Xia, X., and Tu, J., “Defect Promoted Capacity and Durability of N-MnO2–x Branch Arrays via Low-Temperature NH3 Treatment for Advanced Aqueous Zinc Ion Batteries”, Small, 15(47) (2019).
  • [94] Ma, Y., Xu, M., Liu, R., Xiao, H., Liu, Y., Wang, X., Huang, Y., and Yuan, G., “Molecular tailoring of MnO2 by bismuth doping to achieve aqueous zinc-ion battery with capacitor-level durability”, Energy Storage Mater, 48, 212–222 (2022).
  • [95] Zhao, Y., Zhang, P., Liang, J., Xia, X., Ren, L., Song, L., Liu, W., and Sun, X., “Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery”, Energy Storage Mater, 47, 424–433 (2022).
  • [96] Liao, Y., Yang, C., Xu, Q., Zhao, W., Zhao, J., Wang, K., and Chen, H. C., “Ag-Doping Effect on MnO2 Cathodes for Flexible Quasi-Solid-State Zinc-Ion Batteries”, Batteries, 8(12) (2022).
  • [97] Xu, J. W., Gao, Q. L., Xia, Y. M., Lin, X. Sen, Liu, W. L., Ren, M. M., Kong, F. G., Wang, S. J., and Lin, C., “High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-manganese dioxide coated by polypyrrole”, J Colloid Interface Sci, 598, 419–429 (2021).
  • [98] Chen, C., Shi, M., Zhao, Y., Yang, C., Zhao, L., and Yan, C., “Al-Intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries”, Chemical Engineering Journal, 422, 130375 (2021).
  • [99] Zou, R., Tang, Z., Chen, X., Li, Z., and Lei, G., “Exploration of Calcium-Doped Manganese Monoxide Cathode for High-Performance Aqueous Zinc-Ion Batteries”, Energy and Fuels, 36(21), 13296–13306 (2022).
  • [100] Li, Z., Zheng, Y., Jiao, Q., Zhao, Y., Li, H., and Feng, C., “Tailoring porous three-dimensional (Co,Mn)(Co,Mn)2O4/PPy architecture towards high-performance cathode for aqueous zinc-ion batteries”, Chemical Engineering Journal, 465, 142897 (2023).
  • [101] Yin, C., Pan, C., Pan, Y., and Hu, J., “Hierarchical spheroidal MOF-derived MnO@C as cathode components for high-performance aqueous zinc ion batteries”, J Colloid Interface Sci, 642, 513–522 (2023).
  • [102] Du, D., Huang, C., Liu, J., Chen, X., Chang, G., Tang, Q., and Hu, A., “Amino-functionalized carbon nanotubes stimulating γ-MnO2 to achieve high-performance zinc-ion batteries”, Electrochim Acta, 456 (2023).
  • [103] Ouyang, D., Wang, X., Liu, Q., Wang, G., Zhang, X., and Chen, J., “MnO x @ porous silicon as cathode material for aqueous rechargeable zinc ion battery”, Silicon, 15(15), 6541-6549, (2023).
  • [104] Wang, H., Guo, R., Ma, Y., and Zhou, F., “Cross-Doped Mn/Mo Oxides with Core-Shell Structures Designed by a Self-Template Strategy for Durable Aqueous Zinc-Ion Batteries”, Adv Funct Mater, 2301351, 1–11 (2023). [105] Gourley, S. W. D., Brown, R., Adams, B. D., and Higgins, D., “Zinc-ion batteries for stationary energy storage”, Joule, 7(7), 1415–1436 (2023).

Aqueous Zinc Ion Batteries: Manganese Oxide Cathode Active Material Properties

Yıl 2024, ERKEN GÖRÜNÜM, 1 - 1
https://doi.org/10.2339/politeknik.1525347

Öz

The ultimate goal is to decrease carbon emission levels in order to help improve sustainability. Yet, in order to utilize the desired renewable systems, it is imperative to incorporate energy storage technologies due to the discontinuation of fossil-based production techniques previously employed. At this juncture, the significance of energy storage systems becomes prominent. Despite the introduction of lithium-ion batteries in 1990 as a solution to this issue, ongoing research persists due to concerns over the availability of lithium resources, production challenges, and safety issues associated with lithium-ion batteries. Zinc ion batteries are notable among the several types of ion batteries now accessible because to their aqueous systems, high volumetric capacity, excellent durability, and cost-effectiveness.
This study focuses on elucidating the working mechanism of zinc ion batteries, which belong to the next generation of ion batteries. Additionally, it examines the characteristics of manganese oxide cathode active materials, with particular emphasis on the connection between production, properties, and performance.

Proje Numarası

MGA-2024-44799

Kaynakça

  • [1] Gür, T. M., “Carbon Dioxide Emissions, Capture, Storage and Utilization: Review of Materials, Processes and Technologies”, Prog Energy Combust Sci, 89 (2022).
  • [2] Kozak, M., and Kozak, Ş. “Enerji Depolama Yöntemleri̇”, Uluslararası Teknolojik Bilimler Dergisi, 4(2), 17–29 (2012).
  • [3] Dai, H., Jiang, B., Hu, X., Lin, X., Wei, X., and Pecht, M., “Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends”, Renewable and Sustainable Energy Reviews, 138 (2021).
  • [4] Li, M., Lu, J., Chen, Z., and Amine, K., “30 Years of Lithium-Ion Batteries”, Advanced Materials, 30(33), 1–24 (2018).
  • [5] Olabi, A. G., Onumaegbu, C., Wilberforce, T., Ramadan, M., Abdelkareem, M. A., and Al – Alami, A. H., “Critical review of energy storage systems”, Energy, 214, 118987 (2021).
  • [6] Manthiram, A., “An Outlook on Lithium Ion Battery Technology”, ACS Cent Sci, 3(10), 1063–1069 (2017).
  • [7] Li, M., Lu, J., Chen, Z., and Amine, K., “30 Years of Lithium-Ion Batteries”, Advanced Materials, 30(33), 1–24 (2018).
  • [8] Nzereogu, P. U., Omah, A. D., Ezema, F. I., Iwuoha, E. I., and Nwanya, A. C., “Anode materials for lithium-ion batteries: A review”, Applied Surface Science Advances, 9, 100233 (2022).
  • [9] Houache, M. S. E., Yim, C. H., Karkar, Z., and Abu-Lebdeh, Y., “On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review”, Batteries, 8(7) (2022).
  • [10] Murdock, B. E., Toghill, K. E., and Tapia-Ruiz, N., “A Perspective on the Sustainability of Cathode Materials used in Lithium‐Ion”, Adv Energy Mater, 11(39) (2021).
  • [11] Spears, B. M., Brownlie, W. J., Cordell, D., Hermann, L., and Mogollón, J. M., “Concerns about global phosphorus demand for lithium-iron-phosphate batteries in the light electric vehicle sector”, Commun Mater, 3(1), 9–10 (2022).
  • [12] https://www.rsc.org/periodic-table/ “Periodic Table – Royal Society of Chemistry”,(2024).
  • [13] Bartlett, N. J., “Critical materials strategy for clean energy technologies”, Critical Materials Strategy for Clean Energy Technologies, 1–170 (2011).
  • [14] https://www.catl.com/en/news/6013.html “CATL’s First Sodium-ion Battery to Power Chery EV Models”,(2024).
  • [15] https://www.energy-storage.news/world-first-grid-scale-sodium-ion-battery-project-in-china-enters-commercial-operation/ “‘World-first’ grid-scale sodium-ion battery project in China launched”, (2024).
  • [16] Vaalma, C., Buchholz, D., Weil, M., and Passerini, S., “A cost and resource analysis of sodium-ion batteries”, Nat Rev Mater, 3 (2018).
  • [17] Xue, T. and Fan, H. J., “From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story”, Journal of Energy Chemistry, 54, 194–201 (2021).
  • [18] Özsin, G., “Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme”, Politeknik Dergisi, 24(3), 1151–1170 (2021).
  • [19] Yu, C., Ganapathy, S., Eck, E. R. H. V., Wang, H., Basak, S., Li, Z., and Wagemaker, M., “Accessing the bottleneck in all-solid state batteries, lithium-ion transport over the solid-electrolyte-electrode interface”, Nat Commun, 8(1), pp. 1–9 (2017).
  • [20] Zheng, J., Li, W., Liu, X., Zhang, J., Feng, X., and Chen, W., “Progress in Gel Polymer Electrolytes for Sodium-Ion Batteries”, Energy and Environmental Materials, 6(4) (2023).
  • [21] Shi, W., Lee, W. S. V., Xue, J. “Recent Development of Mn‐based Oxides as Zinc‐Ion Battery Cathode” ChemSusChem 14(7), 1634-1658 (2021).
  • [22] Liang, Y. and Yao, Y., “Designing modern aqueous batteries”, Nat Rev Mater, 8(2), 109–122 (2023).
  • [23] Chao, D., Zhou, W., Xie, F., Ye, C., Li, H., Jaroniec, M., and Qiao, S. Z., “Roadmap for advanced aqueous batteries: From design of materials to applications”, Sci Adv, 6(21) (2020).
  • [24] Peljo, P. and Girault, H. H., “Electrochemical potential window of battery electrolytes: The HOMO-LUMO misconception”, Energy Environ Sci, 11(9), 2306–2309 (2018).
  • [25] Huang, M., Li, M., Niu, C., Li, Q., and Mai, L., “Recent Advances in Rational Electrode Designs for High-Performance Alkaline Rechargeable Batteries”, Adv Funct Mater, 29(11) (2019).
  • [26] Luo, H., Liu, B., Yang, Z., Wan, Y., and Zhong, C., “The Trade-Offs in the Design of Reversible Zinc Anodes for Secondary Alkaline Batteries”, Electrochemical Energy Reviews, 5(1), pp. 187–210 (2022).
  • [27] Sharma, S., Sarma, P., Bordoloi, S., & Barman, P. “Estimation of Coulombic Efficiency of Lead Acid Battery for Range Determination of Electric Vehicle” 1st Conference on Power, Dielectric and Energy Management at NERIST (ICPDEN) 1-6 (2015).
  • [28] Zhang, T., Tang, Y., Guo, S., Cao, X., Pan, A., Fang, G., Zhou, J., and Liang, S., “Fundamentals and perspectives in developing zinc-ion battery electrolytes: A comprehensive review”, Energy Environ Sci, 13(12), 4625–4665 (2020).
  • [29] Tang, B., Shan, L., Liang, S., and Zhou, J., “Issues and opportunities facing aqueous zinc-ion batteries”, Energy Environ Sci, 12(11), 3288–3304 (2019).
  • [30] Li, G., Sun, L., Zhang, S., Zhang, C., Jin, H., Davey, K., Liang, G., Liu, S., Mao, J., and Guo, Z., “Developing Cathode Materials for Aqueous Zinc Ion Batteries: Challenges and Practical Prospects”, Adv Funct Mater 34(5), 2301291 (2023).
  • [31] James F.A.L.J.D. “Instruments from Scratch? Humphry Davy, Michael Faraday and the Construction of Knowledge” Bulletin of the Scientific Instrument Society 148 (2021).
  • [32] Karunathilaka, S. A. G. R., Hampson, N. A., Leek, R., and Sinclair, T. J., “The Impedance of the Leclanch Cell. 1I. The Impedance of the Individual Cell Components” Journal of Applied Electrochemistry, 10, 603-609 (1980).
  • [33] Wang, Y., Wang, Z., Yang, F., Liu, S., Zhang, S., Mao, J., Guo, Z. “Electrolyte Engineering Enables High Performance Zinc‐Ion Batteries” Small, 18(43), 2107033 (2022).
  • [34] Liu, C., Xie, X., Lu, B., Zhou, J., and Liang, S., “Electrolyte Strategies toward Better Zinc-Ion Batteries”, ACS Energy Lett, 6(3), 1015–1033 (2021).
  • [35] Li, M., Li, Z., Wang, X., Meng, J., Liu, X., Wu, B., Han, C., and Mai, L., “Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: From electrolytes to electrode materials”, Energy Environ Sci, 14(7), 3796–3839 (2021).
  • [36] Krężel, A. and Maret, W., “The biological inorganic chemistry of zinc ions”, Arch Biochem Biophys, 611, 3–19 (2016).
  • [37] Zhao, X., Zhang, X., Dong, N., Yan, M., Zhang, F., Mochizuki, K., and Pan, H., “Advanced Buffering Acidic Aqueous Electrolytes for Ultra-Long Life Aqueous Zinc-Ion Batteries”, Small, 18(21) (2022).
  • [38] Liu, C., Xie, X., Lu, B., Zhou, J., and Liang, S., “Electrolyte Strategies toward Better Zinc-Ion Batteries”, ACS Energy Lett, 6(3), 1015–1033 (2021).
  • [39] Ma, R., Xu, Z., Wang, X. “Energy Environ Materials - 2022 - Ma - Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zinc‐Ion Batteries” Energy & Environmental Materials, 6(5), e12464 (2023).
  • [40] Han, Q., Chi, X., Zhang, S., Liu, Y., Zhou, B., Yang, J., and Liu, Y., “Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries”, J Mater Chem A Mater, 6(45), 23046–23054 (2018).
  • [41] Zeng, Y., Zhang, X., Meng, Y., Yu, M., Yi, J., Wu, Y., Lu, X., and Tong, Y., “Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi-Solid-State Zn–MnO2 Battery”, Advanced Materials, 29(26), 1–7 (2017).
  • [42] Huang, X., He, R., Li, M., Chee, M. O. L., Dong, P., and Lu, J., “Functionalized separator for next-generation batteries”, Materials Today, 41, 143–155 (2020).
  • [43] Fang, Y., Xie, X., Zhang, B., Chai, Y., Lu, B., Liu, M., Liang, S. “Regulating Zinc Deposition Behaviors by the Conditioner of PAN Separator for Zinc‐Ion” Advanced Functional Materials, 32(14), 2109671 (2022).
  • [44] Zong, Y., He, H., Wang, Y., Wu, M., Ren, X., Bai, Z., Dou, S. X. “Functionalized Separator Strategies toward Advanced Aqueous Zinc‐Ion Batteries” Advanced Energy Materials, 13(20), 2300403 (2023).
  • [45] Zhou, T., Zhu, L., Xie, L., Han, Q., Yang, X., Chen, L., Wang, G., and Cao, X., “Cathode materials for aqueous zinc-ion batteries: A mini review”, J Colloid Interface Sci, 605, 828–850 (2022).
  • [46] Lu, W., Xie, C., Zhang, H., and Li, X., “Inhibition of Zinc Dendrite Growth in Zinc-Based Batteries”, ChemSusChem, 11(23), 3996–4006 (2018).
  • [47] Yang, Z., Zhang, Q., Li, W., Xie, C., Wu, T., Hu, C., Tang, Y., and Wang, H., “A Semi-solid Zinc Powder-based Slurry Anode for Advanced Aqueous Zinc-ion Batteries”, Angewandte Chemie - International Edition, 62(3) (2023).
  • [48] Li, H., Xu, C., Han, C., Chen, Y., Wei, C., Li, B., and Kang, F., “Enhancement on Cycle Performance of Zn Anodes by Activated Carbon Modification for Neutral Rechargeable Zinc Ion Batteries”, J Electrochem Soc, 162(8), A1439–A1444 (2015).
  • [49] Zhao, Z., Zhao, J., Hu, Z., Li, J., Li, J., Zhang, Y., Wang, C., and Cui, G., “Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase”, Energy Environ Sci, 12(6), 1938–1949 (2019).
  • [50] Xia, A., Pu, X., Tao, Y., Liu, H., and Wang, Y., “Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries”, Appl Surf Sci, 481, 852–859 (2019).
  • [51] Wang, T., Li, C., Xie, X., Lu, B., He, Z., Liang, S., and Zhou, J., “Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives”, ACS Nano, 14(12), 16321–16347 (2020).
  • [52] Zhang, N., Chen, X., Yu, M., Niu, Z., Cheng, F., and Chen, J., “Materials chemistry for rechargeable zinc-ion batteries”, Chem Soc Rev, 49(13), 4203–4219 (2020).
  • [53] Mathew, V., Sambandam, B., Kim, S., Kim, S., Park, S., Lee, S., Alfaruqi, M. H., Soundharrajan, V., Islam, S., Putro, D. Y., Hwang, J. Y., Sun, Y. K., and Kim, J., “Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments”, ACS Energy Lett, 5(7), 2376–2400 (2020).
  • [54] Wan, F. and Niu, Z., “Design Strategies for Vanadium‐based Aqueous Zinc‐Ion Batteries”, Angewandte Chemie, 131(46), 16508–16517 (2019).
  • [55] Bahlawane, N. and Lenoble, D., “Vanadium oxide compounds: Structure, properties, and growth from the gas phase”, Chemical Vapor Deposition, 20(7–9), 299–311 (2014).
  • [56] Zhou, T., Han, Q., Xie, L., Yang, X., Zhu, L., and Cao, X., “Recent Developments and Challenges of Vanadium Oxides (VxOy) Cathodes for Aqueous Zinc-Ion Batteries”, Chemical Record, 22(4) (2022).
  • [57] Zhang, M., Liang, R., Or, T., Deng, Y.-P., Yu, A., and Chen, Z., “Recent Progress on High‐Performance Cathode Materials for Zinc‐Ion Batteries”, Small Struct, 2(2), 2000064 (2021).
  • [58] Zhang, N., Chen, X., Yu, M., Niu, Z., Cheng, F., and Chen, J., “Materials chemistry for rechargeable zinc-ion batteries”, Chem Soc Rev, 49(13), 4203–4219 (2020).
  • [59] Li, Z., Liu, T., Meng, R., Gao, L., Zou, Y., Peng, P., Shao, Y., and Liang, X., “Insights into the Structure Stability of Prussian Blue for Aqueous Zinc Ion Batteries”, Energy and Environmental Materials, 4(1), 111–116 (2021).
  • [60] Zhou, L. F., Gao, X. W., Du, T., Gong, H., Liu, L. Y., and Luo, W. Bin, “New Phosphate Zn2Fe(PO4)2Cathode Material for Nonaqueous Zinc Ion Batteries with Long Life Span”, ACS Appl Mater Interfaces, 14(7), 8888–8895 (2022).
  • [61] Jiang, P., Kuang, Q., Li, Y., Wei, J., Huang, M., Fan, Q., Dong, Y., and Zhao, Y., “Synthesis, structure and electrochemical performance of hydrated zinc Iron phosphate as low-cost cathode material for aqueous zinc-ion batteries”, Solid State Ion, 412 (2024).
  • [62] Singh, D., Hu, Y., Meena, S. S., Vengarathody, R., Fichtner, M., and Barpanda, P., “Iron-based fluorophosphate Na2FePO4F as a cathode for aqueous zinc-ion batteries”, Chemical Communications, 59(97), 14391–14394 (2023).
  • [63] Gilkes, R. J. and McKenzie, R. M., “Geochemistry and Mineralogy of Manganese in Soils”, In Manganese in Soils and Plants, Springer Netherlands, 23–35 (1988).
  • [64] Dzieciuch, M. A., Gupta}, N., and Wroblowa, H. S., “Rechargeable Cells with Modified MnO2 Cathodes” Journal of The Electrochemical Society, 135(10), 2415 (1988).
  • [65] Wei, W., Cui, X., Chen, W., and Ivey, D. G., “Manganese oxide-based materials as electrochemical supercapacitor electrodes”, Chem Soc Rev, 40(3), 1697–1721 (2011).
  • [66] Bélanger, D., Brousse, T., and Long, J. W., “Manganese Oxides: Battery Materials Make the Leap to Electrochemical Capacitors” The Electrochemical Society Interface, 17(1), 49 (2008).
  • [67] Shoji, T., Hishinuma, M., and Yamamoto, T., “Zinc-Manganese Dioxide Galvanic Cell Using Zinc Sulphate as Electrolyte. Rechargeability of the Cell” Journal Of Applied Electrochemistry, 18, 521-526(1988).
  • [68] Mallick, S. and Raj, C. R., “Aqueous Rechargeable Zn-ion Batteries: Strategies for Improving the Energy Storage Performance”, ChemSusChem, 14(9), 1987–2022 (2021).
  • [69] Zhao, Y., Zhu, Y., and Zhang, X., “Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries”, InfoMat, 2(2), 237–260 (2020).
  • [70] Devaraj, S. and Munichandraiah, N., “Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties”, Journal of Physical Chemistry C, 112(11), 4406–4417 (2008).
  • [71] Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K. S., Nie, Z., Wang, C., Yang, J., Li, X., Bhattacharya, P., Mueller, K. T., and Liu, J., “Reversible aqueous zinc/manganese oxide energy storage from conversion reactions”, Nat Energy, 1 (2016).
  • [72] Alfaruqi, M. H., Mathew, V., Gim, J., Kim, S., Song, J., Baboo, J. P., Choi, S. H., and Kim, J., “Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system”, Chemistry of Materials, 27(10), 3609–3620 (2015).
  • [73] Wang, L., Cao, X., Xu, L., Chen, J., and Zheng, J., “Transformed Akhtenskite MnO2 from Mn3O4 as Cathode for a Rechargeable Aqueous Zinc Ion Battery”, ACS Sustain Chem Eng, 6(12), 16055–16063 (2018).
  • [74] Liu, N., Li, B., He, Z., Dai, L., Wang, H., and Wang, L., “Recent advances and perspectives on vanadium- and manganese-based cathode materials for aqueous zinc ion batteries”, Journal of Energy Chemistry, 59, 134–159 (2021).
  • [75] Zhang, N., Cheng, F., Liu, J., Wang, L., Long, X., Liu, X., Li, F., and Chen, J., “Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities”, Nat Commun, 8(1), 1–9 (2017).
  • [76] Tang, F., Gao, J., Ruan, Q., Wu, X., Wu, X., Zhang, T., Liu, Z., Xiang, Y., He, Z., and Wu, X., “Graphene-Wrapped MnO/C Composites by MOFs-Derived as Cathode Material for Aqueous Zinc ion Batteries”, Electrochim Acta, 353, 136570 (2020).
  • [77] Li, W., Gao, X., Chen, Z., Guo, R., Zou, G., Hou, H., Deng, W., Ji, X., and Zhao, J., “Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery”, Chemical Engineering Journal, 402, 125509 (2020).
  • [78] Zhu, C., Fang, G., Liang, S., Chen, Z., Wang, Z., Ma, J., Wang, H., Tang, B., Zheng, X., and Zhou, J., “Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery”, Energy Storage Mater, 24, 394–401 (2020).
  • [79] Wang, J., Wang, J. G., Liu, H., You, Z., Wei, C., and Kang, F., “Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries”, J Power Sources, 438, 226951 (2019).
  • [80] Jiao, Y., Kang, L., Berry-Gair, J., McColl, K., Li, J., Dong, H., Jiang, H., Wang, R., Corà, F., Brett, D. J. L., He, G., and Parkin, I. P., “Enabling stable MnO2matrix for aqueous zinc-ion battery cathodes”, J Mater Chem A Mater, 8(42), 22075–22082 (2020).
  • [81] Tang, F., He, T., Zhang, H., Wu, X., Li, Y., Long, F., Xiang, Y., Zhu, L., Wu, J., and Wu, X., “The MnO@N-doped carbon composite derived from electrospinning as cathode material for aqueous zinc ion battery”, Journal of Electroanalytical Chemistry, 873, 114368 (2020).
  • [82] Wang, J., Wang, J. G., Liu, H., Wei, C., and Kang, F., “Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries”, J Mater Chem A Mater, 7(22), 13727–13735 (2019).
  • [83] Li, Z., Huang, Y., Zhang, J., Jin, S., Zhang, S., and Zhou, H., “One-step synthesis of MnO:X/PPy nanocomposite as a high-performance cathode for a rechargeable zinc-ion battery and insight into its energy storage mechanism”, Nanoscale, 12(6), 4150–4158 (2020).
  • [84] Huang, J., Wang, Z., Hou, M., Dong, X., Liu, Y., Wang, Y., and Xia, Y., “Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery”, Nat Commun, 9(1), 1–8 (2018).
  • [85] Cai, Y., Chua, R., Huang, S., Ren, H., and Srinivasan, M., “Amorphous manganese dioxide with the enhanced pseudocapacitive performance for aqueous rechargeable zinc-ion battery”, Chemical Engineering Journal, 396, 125221 (2020).
  • [86] Wu, Y., Fee, J., Tobin, Z., Shirazi-Amin, A., Kerns, P., Dissanayake, S., Mirich, A., and Suib, S. L., “Amorphous Manganese Oxides: An Approach for Reversible Aqueous Zinc-Ion Batteries”, ACS Appl Energy Mater, 3(2),1627–1633 (2020).
  • [87] Wang, J., Sun, X., Zhao, H., Xu, L., Xia, J., Luo, M., Yang, Y., and Du, Y., “Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by Rare Earth Doping”, Journal of Physical Chemistry C, 123(37), 22735–22741 (2019).
  • [88] Li, W., Gao, X., Chen, Z., Guo, R., Zou, G., Hou, H., Deng, W., Ji, X., and Zhao, J., “Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery”, Chemical Engineering Journal, 402, 125509 (2020).
  • [89] Zhang, Y., Liu, Y., Liu, Z., Wu, X., Wen, Y., Chen, H., Ni, X., Liu, G., Huang, J., and Peng, S., “MnO2 cathode materials with the improved stability via nitrogen doping for aqueous zinc-ion batteries”, Journal of Energy Chemistry, 64, 23–32 (2022).
  • [90] Jiang, B., Xu, C., Wu, C., Dong, L., Li, J., and Kang, F., “Manganese Sesquioxide as Cathode Material for Multivalent Zinc Ion Battery with High Capacity and Long Cycle Life”, Electrochim Acta, 229, 422–428 (2017).
  • [91] Song, Y., Li, J., Qiao, R., Dai, X., Jing, W., Song, J., Chen, Y., Guo, S., Sun, J., Tan, Q., and Liu, Y., “Binder-free flexible zinc-ion batteries: one-step potentiostatic electrodeposition strategy derived Ce doped-MnO2 cathode”, Chemical Engineering Journal, 431(P4), 133387 (2022).
  • [92] Kataoka, F., Ishida, T., Nagita, K., Kumbhar, V., Yamabuki, K., and Nakayama, M., “Cobalt-Doped Layered MnO2 Thin Film Electrochemically Grown on Nitrogen-Doped Carbon Cloth for Aqueous Zinc-Ion Batteries”, ACS Appl Energy Mater, 3(5), 4720–4726 (2020).
  • [93] Zhang, Y., Deng, S., Luo, M., Pan, G., Zeng, Y., Lu, X., Ai, C., Liu, Q., Xiong, Q., Wang, X., Xia, X., and Tu, J., “Defect Promoted Capacity and Durability of N-MnO2–x Branch Arrays via Low-Temperature NH3 Treatment for Advanced Aqueous Zinc Ion Batteries”, Small, 15(47) (2019).
  • [94] Ma, Y., Xu, M., Liu, R., Xiao, H., Liu, Y., Wang, X., Huang, Y., and Yuan, G., “Molecular tailoring of MnO2 by bismuth doping to achieve aqueous zinc-ion battery with capacitor-level durability”, Energy Storage Mater, 48, 212–222 (2022).
  • [95] Zhao, Y., Zhang, P., Liang, J., Xia, X., Ren, L., Song, L., Liu, W., and Sun, X., “Uncovering sulfur doping effect in MnO2 nanosheets as an efficient cathode for aqueous zinc ion battery”, Energy Storage Mater, 47, 424–433 (2022).
  • [96] Liao, Y., Yang, C., Xu, Q., Zhao, W., Zhao, J., Wang, K., and Chen, H. C., “Ag-Doping Effect on MnO2 Cathodes for Flexible Quasi-Solid-State Zinc-Ion Batteries”, Batteries, 8(12) (2022).
  • [97] Xu, J. W., Gao, Q. L., Xia, Y. M., Lin, X. Sen, Liu, W. L., Ren, M. M., Kong, F. G., Wang, S. J., and Lin, C., “High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-manganese dioxide coated by polypyrrole”, J Colloid Interface Sci, 598, 419–429 (2021).
  • [98] Chen, C., Shi, M., Zhao, Y., Yang, C., Zhao, L., and Yan, C., “Al-Intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries”, Chemical Engineering Journal, 422, 130375 (2021).
  • [99] Zou, R., Tang, Z., Chen, X., Li, Z., and Lei, G., “Exploration of Calcium-Doped Manganese Monoxide Cathode for High-Performance Aqueous Zinc-Ion Batteries”, Energy and Fuels, 36(21), 13296–13306 (2022).
  • [100] Li, Z., Zheng, Y., Jiao, Q., Zhao, Y., Li, H., and Feng, C., “Tailoring porous three-dimensional (Co,Mn)(Co,Mn)2O4/PPy architecture towards high-performance cathode for aqueous zinc-ion batteries”, Chemical Engineering Journal, 465, 142897 (2023).
  • [101] Yin, C., Pan, C., Pan, Y., and Hu, J., “Hierarchical spheroidal MOF-derived MnO@C as cathode components for high-performance aqueous zinc ion batteries”, J Colloid Interface Sci, 642, 513–522 (2023).
  • [102] Du, D., Huang, C., Liu, J., Chen, X., Chang, G., Tang, Q., and Hu, A., “Amino-functionalized carbon nanotubes stimulating γ-MnO2 to achieve high-performance zinc-ion batteries”, Electrochim Acta, 456 (2023).
  • [103] Ouyang, D., Wang, X., Liu, Q., Wang, G., Zhang, X., and Chen, J., “MnO x @ porous silicon as cathode material for aqueous rechargeable zinc ion battery”, Silicon, 15(15), 6541-6549, (2023).
  • [104] Wang, H., Guo, R., Ma, Y., and Zhou, F., “Cross-Doped Mn/Mo Oxides with Core-Shell Structures Designed by a Self-Template Strategy for Durable Aqueous Zinc-Ion Batteries”, Adv Funct Mater, 2301351, 1–11 (2023). [105] Gourley, S. W. D., Brown, R., Adams, B. D., and Higgins, D., “Zinc-ion batteries for stationary energy storage”, Joule, 7(7), 1415–1436 (2023).
Toplam 104 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrokimyasal Enerji Depolama ve Dönüşüm
Bölüm Derleme Makalesi
Yazarlar

Mehmet Feryat Gülcan 0000-0002-1224-5473

Sebahattin Gürmen 0000-0002-3830-9041

Proje Numarası MGA-2024-44799
Erken Görünüm Tarihi 4 Ekim 2024
Yayımlanma Tarihi
Gönderilme Tarihi 31 Temmuz 2024
Kabul Tarihi 25 Eylül 2024
Yayımlandığı Sayı Yıl 2024 ERKEN GÖRÜNÜM

Kaynak Göster

APA Gülcan, M. F., & Gürmen, S. (2024). Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri. Politeknik Dergisi1-1. https://doi.org/10.2339/politeknik.1525347
AMA Gülcan MF, Gürmen S. Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri. Politeknik Dergisi. Published online 01 Ekim 2024:1-1. doi:10.2339/politeknik.1525347
Chicago Gülcan, Mehmet Feryat, ve Sebahattin Gürmen. “Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri”. Politeknik Dergisi, Ekim (Ekim 2024), 1-1. https://doi.org/10.2339/politeknik.1525347.
EndNote Gülcan MF, Gürmen S (01 Ekim 2024) Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri. Politeknik Dergisi 1–1.
IEEE M. F. Gülcan ve S. Gürmen, “Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri”, Politeknik Dergisi, ss. 1–1, Ekim 2024, doi: 10.2339/politeknik.1525347.
ISNAD Gülcan, Mehmet Feryat - Gürmen, Sebahattin. “Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri”. Politeknik Dergisi. Ekim 2024. 1-1. https://doi.org/10.2339/politeknik.1525347.
JAMA Gülcan MF, Gürmen S. Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri. Politeknik Dergisi. 2024;:1–1.
MLA Gülcan, Mehmet Feryat ve Sebahattin Gürmen. “Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri”. Politeknik Dergisi, 2024, ss. 1-1, doi:10.2339/politeknik.1525347.
Vancouver Gülcan MF, Gürmen S. Sulu Çinko İyon Bataryalar: Mangan Oksit Katot Aktif Malzemeleri. Politeknik Dergisi. 2024:1-.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.