Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Aggregate Type on Geopolymer Concrete High Temperature Resistance

Yıl 2023, Cilt: 26 Sayı: 2, 913 - 921, 05.07.2023
https://doi.org/10.2339/politeknik.949657

Öz

Concrete is the most used building material in the world. However, during producing cement, a high amount of energy is consumed, and excessive carbon dioxide emissions are made. The production of alternative binders to the Portland cement has been studied for a long time. Geopolymers are materials that have the potential to be an alternative to the cement. It is well-known that geopolymers have a good high temperature resistance. However, the high temperature resistance of both conventional and geopolymer concretes is significantly affected by the type and properties of the aggregate. In this study, the resistance of geopolymer concretes produced by using limestone, river, basalt and slag aggregates to 600 and 900°C temperatures was determined by comparing their compressive strength losses. The geopolymer concrete produced with limestone aggregate was completely decomposed up on exposure to 900°C. However, the counterpart concretes produced with river, basalt and slag aggregates lost 32.9, 48.5 and 53.6% of their compressive strength, respectively.

Kaynakça

  • [1] Behforouz B., Balkanlou V.S., Naseri F., Kasehchi E., Mohseni E. and Ozbakkaloglu T., “Investigation of eco‑friendly fiber‑reinforced geopolymer composites incorporating recycled coarse aggregates”, International Journal of Environmental Science and Technology, 17: 3251-3260, (2020).
  • [2] Vikas G. and Rao T.D.G., “Setting time, workability and strength properties of alkali activated fly ash and slag based geopolymer concrete activated with high silica modulus water glass”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45: 1483-1492, (2021).
  • [3] Türkiye Çimento Sanayicileri Birliği, İstatistikler, https://www.turkcimento.org.tr/tr/istatistikler/aylik-veriler, (2021) Erişim tarihi: 15 Nisan 2021 [4] International Enery Agency, Cement reports, https://www.iea.org/reports/cement, (2020). Erişim tarihi: 15 Mayıs 2021
  • [5] Ng C., Alengaram U.J., Wong L.S., Mo K.H., Jumaat M.Z. and Ramesh S., “A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete”, Construction and Building Materials, 186: 550-576, (2018).
  • [6] Kumar M., Saxena S.K. and Singh N.B., “Influence of some additives on the properties of fly ash based geopolymer cement mortars”, SN Applied Sciences, 1: 481, (2019).
  • [7] Morsy M.S., Alsayed S.H., Al-Salloum Y. and Almusallam T., “Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder”, Arabian Journal for Science and Engineering, 39: 4333-4339, (2014).
  • [8] Joseph B. and Mathew G., “Influence of aggregate content on the behavior of fly ash based geopolymer concrete”, Scientia Iranica, 19(5): 1188-1194, (2012).
  • [9] Lloyd N.A. and Rangan B.V., “Geopolymer Concrete with Fly Ash”, Second International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, (2010).
  • [10] Kushnir A.R.L., Heap M. J., Griffiths L., Wadsworth F.B., Langella A., Baud P., Reuschle T., Kendrick J.E. and Utley J.E.P., “The fire resistance of high-strength concrete containing natural zeolites”, Cement and Concrete Composites, 116: 103897, (2021).
  • [11] Junaid M.T., Khennane A. and Kayal O. “Performance of fly ash based geopolymer concrete made using non-pelletized fly ash aggregates after exposure to high temperatures”, Materials and Structures, 48: 3357-3365, (2015).
  • [12] Sanket R., Aniruddha T., Bahurudeen A. and Appari S., “Performance of concrete during fire exposure-a Review”, International Journal of Engineering Research & Technology (IJERT), 4(3): 1-8, (2016).
  • [13] Metha P.K. and Monteiro P.J.M., “Concrete, Microstructure, Properties and Materials”, Third edition, McGraw-Hill Education, New York, USA, (2006).
  • [14] Neville A.M., “Properties of Concrete”, Fifth edition, Pearson, India, (2013).
  • [15] Broceta G., MaleSev M., Radonjanın V., Slijepcevic M. and Zrnic D., “The influence of aggregate types on the concrete fire resistance”, 1st International Symposium Knowledge For Resilient Society K-FORCE 2017, Novi Sad, Serbia, (2017).
  • [16] Şahin F., Uysal M. and Canpolat O., “Systematic evaluation of the aggregate types and properties on metakaolin based geopolymer composites”, Construction and Building Materials, 278: 122414, (2021).
  • [17] Kong D.L.Y. and Sanjayan J.G., “Effect of elevated temperatures on geopolymer paste, mortar and concrete”, Cement and Concrete Research, 40: 334-339, (2010). [18] TS EN 459-2, “Yapı kireci - Bölüm 2: Deney metotları”, (2012).
  • [19] TS EN 12350-6, “Beton - Taze beton deneyleri - Bölüm 6: Birim hacim kütlesi”, (2019).
  • [20] TS EN 12350-2, “Beton - Taze beton deneyleri - Bölüm 2: Çökme (slump) deneyi”, (2019).
  • [21] Cho Y.K., Yoo S.W., Jung S.H., Lee K.M. and Kwon S.J, “Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer”, Construction and Building Materials, 145: 253-260, (2017).
  • [22] Bocullo V., Vitola L., Vaiciukyniene D., Kantautas A. and Bajare D., “The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash”, Materials Chemistry and Physics, 258: 123846, (2021).
  • [23] Saloma, Hanafiah, Elysandi D.O. and Meykan D. G., “Effect of Na2SiO3/NaOH on mechanical properties and microstructure of geopolymer mortar using fly ash and rice husk ash as precursor”, Proceedings of the 3rd International Conference on Construction and Building Engineering (ICONBUILD), Palembang, Indonesia, (2017).

Agrega Türünün Geopolimer Betonun Yüksek Sıcaklık Direncine Etkisi

Yıl 2023, Cilt: 26 Sayı: 2, 913 - 921, 05.07.2023
https://doi.org/10.2339/politeknik.949657

Öz

Beton, dünyada en çok kullanılan yapı malzemesidir. Ancak çimento üretimi sırasında yüksek miktarda enerji tüketilmekte ve karbondioksit salımı yapılmaktadır. Çimentoya alternatif bağlayıcıların üretilmesi, uzun süredir üzerinde çalışılan bir konudur. Geopolimerler, çimentoya alternatif olma potansiyeli taşıyan malzemelerdir. Geopolimerlerin iyi bir yüksek sıcaklık direncine sahip oldukları bilinmektedir. Ancak hem geleneksel hem de geopolimer betonların yüksek sıcaklık dirençleri, kullanılan agreganın türü ve özelliklerinden önemli ölçüde etkilenmektedir. Bu çalışmada kireçtaşı, dere, bazalt ve cüruf agregaları kullanılarak üretilen geopolimer betonların 600 ve 900°C yüksek sıcaklık etkisine karşı dirençleri basınç dayanımı kayıpları kıyaslanarak tespit edilmiştir. 900°C sıcaklık etkisinde, kireçtaşı ile üretilen geopolimer beton tamamen parçalanırken dere, bazalt ve cüruf agregaları ile üretilen betonların %32.9, 48.5 ve 53.6 oranında basınç dayanımı kaybına uğradıkları tespit edilmiştir.    

Teşekkür

Malzeme teminindeki yardımlarından ötürü Kılıçlar A.Ş’ye teşekkürlerimizi sunarız.

Kaynakça

  • [1] Behforouz B., Balkanlou V.S., Naseri F., Kasehchi E., Mohseni E. and Ozbakkaloglu T., “Investigation of eco‑friendly fiber‑reinforced geopolymer composites incorporating recycled coarse aggregates”, International Journal of Environmental Science and Technology, 17: 3251-3260, (2020).
  • [2] Vikas G. and Rao T.D.G., “Setting time, workability and strength properties of alkali activated fly ash and slag based geopolymer concrete activated with high silica modulus water glass”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45: 1483-1492, (2021).
  • [3] Türkiye Çimento Sanayicileri Birliği, İstatistikler, https://www.turkcimento.org.tr/tr/istatistikler/aylik-veriler, (2021) Erişim tarihi: 15 Nisan 2021 [4] International Enery Agency, Cement reports, https://www.iea.org/reports/cement, (2020). Erişim tarihi: 15 Mayıs 2021
  • [5] Ng C., Alengaram U.J., Wong L.S., Mo K.H., Jumaat M.Z. and Ramesh S., “A review on microstructural study and compressive strength of geopolymer mortar, paste and concrete”, Construction and Building Materials, 186: 550-576, (2018).
  • [6] Kumar M., Saxena S.K. and Singh N.B., “Influence of some additives on the properties of fly ash based geopolymer cement mortars”, SN Applied Sciences, 1: 481, (2019).
  • [7] Morsy M.S., Alsayed S.H., Al-Salloum Y. and Almusallam T., “Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder”, Arabian Journal for Science and Engineering, 39: 4333-4339, (2014).
  • [8] Joseph B. and Mathew G., “Influence of aggregate content on the behavior of fly ash based geopolymer concrete”, Scientia Iranica, 19(5): 1188-1194, (2012).
  • [9] Lloyd N.A. and Rangan B.V., “Geopolymer Concrete with Fly Ash”, Second International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, (2010).
  • [10] Kushnir A.R.L., Heap M. J., Griffiths L., Wadsworth F.B., Langella A., Baud P., Reuschle T., Kendrick J.E. and Utley J.E.P., “The fire resistance of high-strength concrete containing natural zeolites”, Cement and Concrete Composites, 116: 103897, (2021).
  • [11] Junaid M.T., Khennane A. and Kayal O. “Performance of fly ash based geopolymer concrete made using non-pelletized fly ash aggregates after exposure to high temperatures”, Materials and Structures, 48: 3357-3365, (2015).
  • [12] Sanket R., Aniruddha T., Bahurudeen A. and Appari S., “Performance of concrete during fire exposure-a Review”, International Journal of Engineering Research & Technology (IJERT), 4(3): 1-8, (2016).
  • [13] Metha P.K. and Monteiro P.J.M., “Concrete, Microstructure, Properties and Materials”, Third edition, McGraw-Hill Education, New York, USA, (2006).
  • [14] Neville A.M., “Properties of Concrete”, Fifth edition, Pearson, India, (2013).
  • [15] Broceta G., MaleSev M., Radonjanın V., Slijepcevic M. and Zrnic D., “The influence of aggregate types on the concrete fire resistance”, 1st International Symposium Knowledge For Resilient Society K-FORCE 2017, Novi Sad, Serbia, (2017).
  • [16] Şahin F., Uysal M. and Canpolat O., “Systematic evaluation of the aggregate types and properties on metakaolin based geopolymer composites”, Construction and Building Materials, 278: 122414, (2021).
  • [17] Kong D.L.Y. and Sanjayan J.G., “Effect of elevated temperatures on geopolymer paste, mortar and concrete”, Cement and Concrete Research, 40: 334-339, (2010). [18] TS EN 459-2, “Yapı kireci - Bölüm 2: Deney metotları”, (2012).
  • [19] TS EN 12350-6, “Beton - Taze beton deneyleri - Bölüm 6: Birim hacim kütlesi”, (2019).
  • [20] TS EN 12350-2, “Beton - Taze beton deneyleri - Bölüm 2: Çökme (slump) deneyi”, (2019).
  • [21] Cho Y.K., Yoo S.W., Jung S.H., Lee K.M. and Kwon S.J, “Effect of Na2O content, SiO2/Na2O molar ratio, and curing conditions on the compressive strength of FA-based geopolymer”, Construction and Building Materials, 145: 253-260, (2017).
  • [22] Bocullo V., Vitola L., Vaiciukyniene D., Kantautas A. and Bajare D., “The influence of the SiO2/Na2O ratio on the low calcium alkali activated binder based on fly ash”, Materials Chemistry and Physics, 258: 123846, (2021).
  • [23] Saloma, Hanafiah, Elysandi D.O. and Meykan D. G., “Effect of Na2SiO3/NaOH on mechanical properties and microstructure of geopolymer mortar using fly ash and rice husk ash as precursor”, Proceedings of the 3rd International Conference on Construction and Building Engineering (ICONBUILD), Palembang, Indonesia, (2017).
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Adil Gültekin 0000-0002-5267-5312

Hojjat Hosseınnezhad 0000-0002-9846-2435

Kambiz Ramyar 0000-0003-2200-2691

Yayımlanma Tarihi 5 Temmuz 2023
Gönderilme Tarihi 8 Haziran 2021
Yayımlandığı Sayı Yıl 2023 Cilt: 26 Sayı: 2

Kaynak Göster

APA Gültekin, A., Hosseınnezhad, H., & Ramyar, K. (2023). Agrega Türünün Geopolimer Betonun Yüksek Sıcaklık Direncine Etkisi. Politeknik Dergisi, 26(2), 913-921. https://doi.org/10.2339/politeknik.949657
AMA Gültekin A, Hosseınnezhad H, Ramyar K. Agrega Türünün Geopolimer Betonun Yüksek Sıcaklık Direncine Etkisi. Politeknik Dergisi. Temmuz 2023;26(2):913-921. doi:10.2339/politeknik.949657
Chicago Gültekin, Adil, Hojjat Hosseınnezhad, ve Kambiz Ramyar. “Agrega Türünün Geopolimer Betonun Yüksek Sıcaklık Direncine Etkisi”. Politeknik Dergisi 26, sy. 2 (Temmuz 2023): 913-21. https://doi.org/10.2339/politeknik.949657.
EndNote Gültekin A, Hosseınnezhad H, Ramyar K (01 Temmuz 2023) Agrega Türünün Geopolimer Betonun Yüksek Sıcaklık Direncine Etkisi. Politeknik Dergisi 26 2 913–921.
IEEE A. Gültekin, H. Hosseınnezhad, ve K. Ramyar, “Agrega Türünün Geopolimer Betonun Yüksek Sıcaklık Direncine Etkisi”, Politeknik Dergisi, c. 26, sy. 2, ss. 913–921, 2023, doi: 10.2339/politeknik.949657.
ISNAD Gültekin, Adil vd. “Agrega Türünün Geopolimer Betonun Yüksek Sıcaklık Direncine Etkisi”. Politeknik Dergisi 26/2 (Temmuz 2023), 913-921. https://doi.org/10.2339/politeknik.949657.
JAMA Gültekin A, Hosseınnezhad H, Ramyar K. Agrega Türünün Geopolimer Betonun Yüksek Sıcaklık Direncine Etkisi. Politeknik Dergisi. 2023;26:913–921.
MLA Gültekin, Adil vd. “Agrega Türünün Geopolimer Betonun Yüksek Sıcaklık Direncine Etkisi”. Politeknik Dergisi, c. 26, sy. 2, 2023, ss. 913-21, doi:10.2339/politeknik.949657.
Vancouver Gültekin A, Hosseınnezhad H, Ramyar K. Agrega Türünün Geopolimer Betonun Yüksek Sıcaklık Direncine Etkisi. Politeknik Dergisi. 2023;26(2):913-21.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.