Araştırma Makalesi
BibTex RIS Kaynak Göster

Sulu Çözeltilerden Amoksisilin Gideriminde Ani (Flaş) Isıtma Yöntemiyle Elde Edilen Aktif Karbonların Kullanımı

Yıl 2024, Cilt: 27 Sayı: 1, 387 - 396, 29.02.2024
https://doi.org/10.2339/politeknik.1049425

Öz

Bu çalışmada, farklı biyokütle atıkları kullanılarak aktif karbon ilk defa ani (flaş) ısıtma yöntemi ile üretilmiştir. Ani ısıtma yöntemiyle üretilen aktif karbonlar, sulu çözeltiden amoksisilin gideriminde adsorbent olarak kullanılmıştır. Adsorpsiyon deneyleri sonucunda elde edilen verilere farklı adsorpsiyon izoterm ve kinetik modelleri uygulanmış ve adsorpsiyon termodinamiği araştırılmıştır. Üretilen aktif karbonların amoksisilin (AMX) adsorpsiyon kapasitesi 300-500 mg/g arasında bulunmuştur. Sonuçlar değerlendirildiğinde, ani (flaş) ısıtma yöntemiyle yüzey alanı ve mikrogözenekliliği yüksek aktif karbonların amoksisilin gideriminde etkili bir adsorbent olarak kullanılabileceği belirlenmiştir.

Kaynakça

  • [1] Rashadi N.A. ve Yusup S., “A review on recent technological advancement in the activated carbon production from oil palm wastes”, Chemical Engineering Journal, 314: 277-290, (2017).
  • [2] Ao W., Fu J., Mao Q., Kang Q., Ran C., Liu Y., Zhang H., Gao Z., Li J., Liu G., Dai J., “Microwave assisted preparation of activated carbon from biomass: A review”, Renewable and Sustainable Energy Reviews, 92: 958-979, (2018).
  • [3] Yuen F.K. and Hameed B.H., “Recent development in the preparation and regeneration of activated carbons by microwave”, Advances in Colloid and Interface Science, 149: 19-27, (2009).
  • [4] Hesas R.H., Daus W.M.A.W., Sahu J.N., Arami-Niya A., “The effect of a microwave heating method on the production of activated carbon from agricultural waste: A review”, Journal of Analytical and Applied Pyrolysis, 100: 1-11, (2013).
  • [5] Deng H., Li G., Yang H., Tang J., Tang J., “Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation”, Chemical Engineering Journal, 163: 373-381, (2010).
  • [6] Yang K., Peng J., Srinivasakannan C., Zhang L., Xia H., Duan X., “Preparation of high surface area activated carbon from coconut shells using microwave heating”, Bioresource Technology, 101: 6163-6169, (2010).
  • [7] Li W., Peng J., Zhang L., Yang K., Xia H., Zhang S., Guo S., “Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW”, Waste Management, 29: 756-760, (2009).
  • [8] Baghapour M.A., Shirdarreh M.R., Faramarzian M., “Degradation of amoxicillin by bacterial consortium in a submerged biological aerated filter: volumetric removal modelling”. J Health Sci Surveillance Sys, 2(1):15-25, (2013).
  • [9] Yurtay, A., “Ani (flaş) ısıtma yöntemi ile aktif karbon üretimi, karakterizasyonu ve antibiyotik gideriminde kullanımı”, (Yüksek Lisans Tezi), Eskişehir: Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, (2020).
  • [10] Foo K.Y., and Hameed B.H., “Insights into the modeling of adsorption isotherm systems”, Chemical Engineering Journal, 156: 2-10, (2010).
  • [11] Arslan, H. “Yerfıstığı kabuğunun lindan ve metabolitlerinin sulu çözeltilerden giderilmesinde kullanımının araştırılması” (Doktora Tezi), Mersin: Mersin Üniversitesi, Fen Bilimleri Enstitüsü, (2009).
  • [12] Chegrouche S., Mellah A. and Barkat M., “Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies”, Desalination, 235: 306–318, (2019).
  • [13] Weber T.W. and Chakravorti R.K., “Pore and Solid Diffusion Models for Fixed-Bed Adsorbers”, AlChE Journal, 20(2): 228-238, (1974).
  • [14] Hameed B.H. and Rahman A.A., “Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material”, Journal of Hazardous Materials, 160, 576-581, (2008).
  • [15] Çalışkan E. and Göktürk S,. “Adsorption Characteristics of Sulfamethoxazole and Metronidazole on Activated Carbon”, Separation Science and Technology, 45(2): 244-255, (2013).
  • [16] Dabrowski, A., “Adsorption-from theory to practice”, Advances in Colloid and Interface Science, 93:135-224, (2001).
  • [17] Sarıkaya, Y., “Fizikokimya”, Ankara: Gazi Kitabevi, (2011).
  • [18] Zeytinci B., “Elektrospining tekniği ve UV ışımasının eşzamanlı olarak uygulanması ile nanofiber membranların hazırlanması ve kıymetli metallerin adsorpsiyonunda uygulanması” (Doktora Tezi), İstanbul: İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (2014).
  • [19] Qiu H., Lv L., Pan B., Zhang Q.J., Zhang W.M. and Zhang Q.X., “Critical review in adsorption kinetic models”, J. Zhejiang Univ Sci A, 10(5): 716-724, (2009).
  • [20] Mutlu S., “Fındık kabuğu ve üzüm çekirdeğinden üretilen aktif karbonlar ile kurşun iyonlarının adsorpsiyonu”, (Yüksek Lisans Tezi), İstanbul: İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (2009).
  • [21] Liu H., Xu G., Li G., “Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline”, Journal of Colloid and Interface Science, 587: 271-278, (2021).
  • [22] Kariim I., Abdulkareem A.S. and Abubakre O.K. “Development and characterization of MWCNTs from activated carbon as adsorbent for metronidazole and levofloxacin sorption from pharmaceutical wastewater: Kinetics, isotherms and thermodynamic studies”, Scientific African, e00242, (2020).
  • [23] Putra E.K., Pranowo R., Sunarso J., Indraswati N. and Ismadji S., “Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics”, Water Research, 43: 2419-243, (2009).
  • [24] Pezoti O., Cazetta A.L., Bedin K.C., Souza L.S., Martins A.C., Silva T.L., Junior O.O.S., Visentainer J.V. and Almeida V.C., “NaOH activated carbon of high surface area produces from guava seeds as a high efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies”, Chemical Engineering Journal, 288:778-788, (2016).
  • [25] Belhachemi M. and Djelaila S., “Removal of Amoxicillin Antibiotic from Aqueous Solutions by Date Pits Activated Carbons”, Environmental Processes, 4: 549–561, (2017).
  • [26] Chayid M.A. and Ahmed M.J., “Amoxicillin adsorption on microwave prepared from activated carbon from arundo donax linn: isotherms, kinetics ans thermodynamics studies”, Journal of Environmental Chemical Engineering, 3:1592-1601, (2015).
  • [27] Mousssavi G., Alahabadi A., Yaghmaeian K. and Eskandari M., “Preparation characterization and adsorption potential of the NH4Cl induced activated carbon for the removal of amoxicillin antibiotic from water”, Chemical Engineering Journal, 217: 119-128, (2013).
  • [28] Kılıç, M., “Euphorbia rigida’dan elde edilen aktif karbonun sulu çözeltilerdeki adsorpsiyon özelliklerinin ve kinetiğinin incelenmesi”, (Yüksek Lisans Tezi), Eskişehir: Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, (2009).

The Use of Activated Carbons Obtained by Flash Heating Method for the Removal of Amoxicillin From Aqueous Solutions

Yıl 2024, Cilt: 27 Sayı: 1, 387 - 396, 29.02.2024
https://doi.org/10.2339/politeknik.1049425

Öz

In this study, activated carbon was produced for the first time by flash heating method using different biomass wastes. Activated carbons produced by the flash heating method were used as adsorbent in the removal of amoxicillin from the aqueous solution. Different adsorption isotherm and kinetic models were applied to the data obtained from the adsorption experiments and adsorption thermodynamics were investigated. The amoxicillin (AMX) adsorption capacity of the produced activated carbons was found between 300-500 mg/g. When the results were evaluated, it was determined that activated carbons with high surface area and microporosity can be used as an effective adsorbent in the removal of amoxicillin by flash heating.

Kaynakça

  • [1] Rashadi N.A. ve Yusup S., “A review on recent technological advancement in the activated carbon production from oil palm wastes”, Chemical Engineering Journal, 314: 277-290, (2017).
  • [2] Ao W., Fu J., Mao Q., Kang Q., Ran C., Liu Y., Zhang H., Gao Z., Li J., Liu G., Dai J., “Microwave assisted preparation of activated carbon from biomass: A review”, Renewable and Sustainable Energy Reviews, 92: 958-979, (2018).
  • [3] Yuen F.K. and Hameed B.H., “Recent development in the preparation and regeneration of activated carbons by microwave”, Advances in Colloid and Interface Science, 149: 19-27, (2009).
  • [4] Hesas R.H., Daus W.M.A.W., Sahu J.N., Arami-Niya A., “The effect of a microwave heating method on the production of activated carbon from agricultural waste: A review”, Journal of Analytical and Applied Pyrolysis, 100: 1-11, (2013).
  • [5] Deng H., Li G., Yang H., Tang J., Tang J., “Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation”, Chemical Engineering Journal, 163: 373-381, (2010).
  • [6] Yang K., Peng J., Srinivasakannan C., Zhang L., Xia H., Duan X., “Preparation of high surface area activated carbon from coconut shells using microwave heating”, Bioresource Technology, 101: 6163-6169, (2010).
  • [7] Li W., Peng J., Zhang L., Yang K., Xia H., Zhang S., Guo S., “Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW”, Waste Management, 29: 756-760, (2009).
  • [8] Baghapour M.A., Shirdarreh M.R., Faramarzian M., “Degradation of amoxicillin by bacterial consortium in a submerged biological aerated filter: volumetric removal modelling”. J Health Sci Surveillance Sys, 2(1):15-25, (2013).
  • [9] Yurtay, A., “Ani (flaş) ısıtma yöntemi ile aktif karbon üretimi, karakterizasyonu ve antibiyotik gideriminde kullanımı”, (Yüksek Lisans Tezi), Eskişehir: Eskişehir Teknik Üniversitesi, Lisansüstü Eğitim Enstitüsü, (2020).
  • [10] Foo K.Y., and Hameed B.H., “Insights into the modeling of adsorption isotherm systems”, Chemical Engineering Journal, 156: 2-10, (2010).
  • [11] Arslan, H. “Yerfıstığı kabuğunun lindan ve metabolitlerinin sulu çözeltilerden giderilmesinde kullanımının araştırılması” (Doktora Tezi), Mersin: Mersin Üniversitesi, Fen Bilimleri Enstitüsü, (2009).
  • [12] Chegrouche S., Mellah A. and Barkat M., “Removal of strontium from aqueous solutions by adsorption onto activated carbon: kinetic and thermodynamic studies”, Desalination, 235: 306–318, (2019).
  • [13] Weber T.W. and Chakravorti R.K., “Pore and Solid Diffusion Models for Fixed-Bed Adsorbers”, AlChE Journal, 20(2): 228-238, (1974).
  • [14] Hameed B.H. and Rahman A.A., “Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material”, Journal of Hazardous Materials, 160, 576-581, (2008).
  • [15] Çalışkan E. and Göktürk S,. “Adsorption Characteristics of Sulfamethoxazole and Metronidazole on Activated Carbon”, Separation Science and Technology, 45(2): 244-255, (2013).
  • [16] Dabrowski, A., “Adsorption-from theory to practice”, Advances in Colloid and Interface Science, 93:135-224, (2001).
  • [17] Sarıkaya, Y., “Fizikokimya”, Ankara: Gazi Kitabevi, (2011).
  • [18] Zeytinci B., “Elektrospining tekniği ve UV ışımasının eşzamanlı olarak uygulanması ile nanofiber membranların hazırlanması ve kıymetli metallerin adsorpsiyonunda uygulanması” (Doktora Tezi), İstanbul: İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (2014).
  • [19] Qiu H., Lv L., Pan B., Zhang Q.J., Zhang W.M. and Zhang Q.X., “Critical review in adsorption kinetic models”, J. Zhejiang Univ Sci A, 10(5): 716-724, (2009).
  • [20] Mutlu S., “Fındık kabuğu ve üzüm çekirdeğinden üretilen aktif karbonlar ile kurşun iyonlarının adsorpsiyonu”, (Yüksek Lisans Tezi), İstanbul: İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, (2009).
  • [21] Liu H., Xu G., Li G., “Preparation of porous biochar based on pharmaceutical sludge activated by NaOH and its application in the adsorption of tetracycline”, Journal of Colloid and Interface Science, 587: 271-278, (2021).
  • [22] Kariim I., Abdulkareem A.S. and Abubakre O.K. “Development and characterization of MWCNTs from activated carbon as adsorbent for metronidazole and levofloxacin sorption from pharmaceutical wastewater: Kinetics, isotherms and thermodynamic studies”, Scientific African, e00242, (2020).
  • [23] Putra E.K., Pranowo R., Sunarso J., Indraswati N. and Ismadji S., “Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics”, Water Research, 43: 2419-243, (2009).
  • [24] Pezoti O., Cazetta A.L., Bedin K.C., Souza L.S., Martins A.C., Silva T.L., Junior O.O.S., Visentainer J.V. and Almeida V.C., “NaOH activated carbon of high surface area produces from guava seeds as a high efficiency adsorbent for amoxicillin removal: kinetic, isotherm and thermodynamic studies”, Chemical Engineering Journal, 288:778-788, (2016).
  • [25] Belhachemi M. and Djelaila S., “Removal of Amoxicillin Antibiotic from Aqueous Solutions by Date Pits Activated Carbons”, Environmental Processes, 4: 549–561, (2017).
  • [26] Chayid M.A. and Ahmed M.J., “Amoxicillin adsorption on microwave prepared from activated carbon from arundo donax linn: isotherms, kinetics ans thermodynamics studies”, Journal of Environmental Chemical Engineering, 3:1592-1601, (2015).
  • [27] Mousssavi G., Alahabadi A., Yaghmaeian K. and Eskandari M., “Preparation characterization and adsorption potential of the NH4Cl induced activated carbon for the removal of amoxicillin antibiotic from water”, Chemical Engineering Journal, 217: 119-128, (2013).
  • [28] Kılıç, M., “Euphorbia rigida’dan elde edilen aktif karbonun sulu çözeltilerdeki adsorpsiyon özelliklerinin ve kinetiğinin incelenmesi”, (Yüksek Lisans Tezi), Eskişehir: Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, (2009).
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Aygül Yurtay 0000-0001-6083-4515

Murat Kilic 0000-0002-7141-2075

Yayımlanma Tarihi 29 Şubat 2024
Gönderilme Tarihi 28 Aralık 2021
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 1

Kaynak Göster

APA Yurtay, A., & Kilic, M. (2024). Sulu Çözeltilerden Amoksisilin Gideriminde Ani (Flaş) Isıtma Yöntemiyle Elde Edilen Aktif Karbonların Kullanımı. Politeknik Dergisi, 27(1), 387-396. https://doi.org/10.2339/politeknik.1049425
AMA Yurtay A, Kilic M. Sulu Çözeltilerden Amoksisilin Gideriminde Ani (Flaş) Isıtma Yöntemiyle Elde Edilen Aktif Karbonların Kullanımı. Politeknik Dergisi. Şubat 2024;27(1):387-396. doi:10.2339/politeknik.1049425
Chicago Yurtay, Aygül, ve Murat Kilic. “Sulu Çözeltilerden Amoksisilin Gideriminde Ani (Flaş) Isıtma Yöntemiyle Elde Edilen Aktif Karbonların Kullanımı”. Politeknik Dergisi 27, sy. 1 (Şubat 2024): 387-96. https://doi.org/10.2339/politeknik.1049425.
EndNote Yurtay A, Kilic M (01 Şubat 2024) Sulu Çözeltilerden Amoksisilin Gideriminde Ani (Flaş) Isıtma Yöntemiyle Elde Edilen Aktif Karbonların Kullanımı. Politeknik Dergisi 27 1 387–396.
IEEE A. Yurtay ve M. Kilic, “Sulu Çözeltilerden Amoksisilin Gideriminde Ani (Flaş) Isıtma Yöntemiyle Elde Edilen Aktif Karbonların Kullanımı”, Politeknik Dergisi, c. 27, sy. 1, ss. 387–396, 2024, doi: 10.2339/politeknik.1049425.
ISNAD Yurtay, Aygül - Kilic, Murat. “Sulu Çözeltilerden Amoksisilin Gideriminde Ani (Flaş) Isıtma Yöntemiyle Elde Edilen Aktif Karbonların Kullanımı”. Politeknik Dergisi 27/1 (Şubat 2024), 387-396. https://doi.org/10.2339/politeknik.1049425.
JAMA Yurtay A, Kilic M. Sulu Çözeltilerden Amoksisilin Gideriminde Ani (Flaş) Isıtma Yöntemiyle Elde Edilen Aktif Karbonların Kullanımı. Politeknik Dergisi. 2024;27:387–396.
MLA Yurtay, Aygül ve Murat Kilic. “Sulu Çözeltilerden Amoksisilin Gideriminde Ani (Flaş) Isıtma Yöntemiyle Elde Edilen Aktif Karbonların Kullanımı”. Politeknik Dergisi, c. 27, sy. 1, 2024, ss. 387-96, doi:10.2339/politeknik.1049425.
Vancouver Yurtay A, Kilic M. Sulu Çözeltilerden Amoksisilin Gideriminde Ani (Flaş) Isıtma Yöntemiyle Elde Edilen Aktif Karbonların Kullanımı. Politeknik Dergisi. 2024;27(1):387-96.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.