Araştırma Makalesi
BibTex RIS Kaynak Göster

ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE MİKRO KANALLI ABSORBER VE DESORBERİN SAYISAL OLARAK MODELLENMESİ

Yıl 2024, Cilt: 27 Sayı: 5, 1823 - 1836
https://doi.org/10.2339/politeknik.1341852

Öz

Çalışma kapsamında mikro kanallı ve membran tabanlı absorber ve desorber farklı kanal yükseklikleri (0,5mm – 1mm – 1,5mm), farklı eriyik giriş hızları (0,003-0,072 m/s ve 0,0075-0,0125 m/s), farklı eriyik çeşitleri (LiBr-Su, LiBr/LiNO3/LiI/LiCl-Su, [EMIM][OAc]-Su, LiCl-Su) ve farklı kanal tiplerine (düz kanal, içerisinde bölgesel tümsekler içeren kanal, kanal boyunca kavisler içeren kanal) göre optimizasyon çalışması gerçekleştirilmiş ve sonuçlar değerlendirilmiştir. Sonuç olarak eriyik giriş hızları ve kanal yükseklerinde optimum koşullar belirlenmiş ve özellikle [EMIM][OAc]-Su eriyiğinin absorbsiyon oranı ve basınç düşüşü verilerine göre, LiCl-Su eriyiğinin ise desorbsiyon oranı verilerine göre avantajlı olduğu tespit edilmiştir. Bununla birlikte kanal yapısındaki değişikliklerin absorbsiyon oranlarında anlamlı bir artış sağladığı, bununla birlikte basınç düşüşü konusunda negatif etkisi tüm sonuçlarda görülmüştür.

Kaynakça

  • [1] Asfand, F., Stiriba, Y. and Bourouis, M. “CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems.” Energy, 91: 517-530, (2015).
  • [2] Sui, Z., Wu, W., You, T., Zheng, Z. and Leung, M. “Performance investigation and enhancement of membrane-contactor microchannel absorber towards compact absorption cooling.” International Journal of Heat and Mass Transfer, 169: 120978, (2021).
  • [3] Venegas, M., Vega, M., Garcia-Hernando, N. and Ruiz-Rivas, U. “Simplified model of a membrane-based rectangular micro-desorber for absorption chillers.” International Journal of Refrigeration, 71: 108-123, (2016).
  • [4] Vega, M., Garcia-Hernando, N. and Venegas, M. “Experimental performance of membrane water absorption in LiBr solution with and without cooling.” Applied Thermal Engineering, 180: 115786, (2020).
  • [5] Ishafani, N. R. and Moghaddam, S. “Absorption characteristics of lithium bromide (LiBr) solution constrained by superhydrophobic nanofibrous structures.” International Journal of Heat and Mass Transfer, 63: 82-90, (2013).
  • [6] Venegas, M., Garcia-Hernando, N. and Vega, M. “A parametric analysis on the effect of design and operating variables in a membrane-based desorber.” International Journal of Refrigeration, 99: 47-58, (2019).
  • [7] Zhai, C. and Wu, W. “Heat and mass transfer performance comparison of various absorbers/desorbers towards compact and efficient absorption heat pumps.” International Journal of Refrigeration, 127: 203-220, (2021).
  • [8] Determan, D. M. and Garimella, S. “Ammonia water desorption heat and mass transfer in microchannel devices.” International Journal of Refrigeration, 34: 1197-1208, (2011).
  • [9] Staedter, M. A. and Garimella, S. “Development of a micro-scale heat exchanger based, residential capacity ammonia–water absorption chiller.” International Journal of Refrigeration, 89: 93-103, (2018).
  • [10] Moghaddam, S., Chugh, D., Ishafani, R. N., Gluesenkamp, K. and Abdelaziz, O. “A hybrid absorption cycle for water heating, dehumidification, and evaporative cooling.” ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, 1-9, (2015).
  • [11] Özbaş, E. “Experimental Study Of Diffusion Absorption Refrigeration Systems Using Solar Energy.” Politeknik Dergisi, 21(2): 291-297, (2018).
  • [12] Lee, Y., Lee, G., Cho, J., Choi, B., Han, N. G. and Kim, D. K. “Evaluation of ionic liquids as absorbents for absorption refrigeration systems using hydrofluoro-olefin refrigerant.” Case Studies in Thermal Engineering, 45: 102920, (2023).
  • [13] Wang, S., Hou, K., Zhang, Z., Huang, S., Liu, X. and He, M. “Vapor-liquid equilibrium for dimethyl ether and three imidazolium ionic liquids as working pairs in absorption-refrigeration cycle.” Journal of Molecular Liquids, 380: 121742, (2023).
  • [14] Ho, C. J., Peng, J. K., Yang, T. F., Rashidi, S. and Yan, W. M. “Assessment of cooling performance of mini/micro-channel stacked double layer heat sink.” Alexandria Engineering Journal, 80: 465-474, (2023).
  • [15] Başaran, A. and Yurddaş, A. “Tek fazlı R600a soğutkan akışı için mikrokanal eşanjörün matematiksel modellemesi.” Politeknik Dergisi, 24(3): 797-810, (2021).
  • [16] Çakır, M. T. and Aktürk, D. “Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel.” Politeknik Dergisi, 25(4): 1769-1775, (2022).
  • [17] ANSYS Fluent Theory Guide, (2013).
  • [18] ANSYS Fluent UDF Manual, (2013).
  • [19] Kaita, Y. “Thermodynamic properties of lithium bromide-water solutions at high temperatures.” International Journal of Refrigeraation, 24: 374-390, (2001).
  • [20] Florides, G.A., Kalogirou, S.A., Tassou, S.A. and Wrobel, L.C. “Design and construction of a LiBr–water absorption machine.” Energy Conversion and Management, 44: 2483-2508, (2002).
  • [21] Koo, K.K. and Lee, H.R., “Densities, Viscosities, and Surface Tensions of the Water + Lithium Bromide + Lithium Nitrate + Lithium Iodide + Lithium Chloride.” System. J. Chem. Eng. Data, 44: 1175-1177, (1999).
  • [22] Koo, K.K., Lee, H., Jeong, S., Oh, Y., Park, D. and Baek, Y. “Solubilities, Vapor Pressures, and Heat Capacities of the Water + Lithium Bromide + Lithium Nitrate + Lithium Iodide + Lithium Chloride System.” International Journal of Thermophysics, 20(2): 589-600, (1998).
  • [23] Pineda, M.C.S., “Incremento De Purificación De Agua En Un Transformador Térmico Por Absorción Utilizando (LiBr+LiI+LiNO3+LiCl+H2O).” Yüksek Lisans Tezi, Universidad Autónoma Del Estado De Morelos, (2019).
  • [24] Ji, Q., Yin, Y., Wang, Y., Cao, B., Chen, W., Xu, G. and Li, X. “Comparative analysis of compression-absorption cascade heat pump using.” Energy Conversion and Management, 269: 116084, (2022).
  • [25] Zhang, F., Li, X, Y., Chen, G., Wang, T., Jin. X, T., Cheng, C, X., Li, G, P., Zhang, L, G., Zhang, B. and Zheng, F. “Thermophysical properties and water sorption characteristics of 1-ethyl-3-methylimidazolium acetate ionic liquid and water binary systems various ionic liquid-based working pairs.” International Communications in Heat and Mass Transfer, 127: 105558, (2021).
  • [26] Römich, C., Merkel, N, C., Valbonesi, A., Schaber, K., Sauer, S. and Schubert, T, J, S. “Thermodynamic Properties of Binary Mixtures of Water and Room-Temperature Ionic Liquids: Vapor Pressures, Heat Capacities, Densities, and Viscosities of Water + 1-Ethyl-3-methylimidazolium Acetate and Water + Diethylmethylammonium Methane Sulfonat.” Journal of Chemical Engineering Data, 57: 2258-2264, (2012).
  • [27] Conde, M. R., “Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design.” International Journal of Thermal Sciences, 43: 367-382, (2004).
  • [28] Chaudhari, S.K. and Patil, K. R., “Thermodynamic Properties of Aqueous Solutions of Lithium Chloride.” Physics and Chemistry of Liquids: An International Journal, 40(3): 317-325, (2001).
  • [29] Sun, L., Li, J., Xu, H., Ma, Jie. and Peng, H. “Numerical study on heat transfer and flow characteristics of novel microchannel heat sinks.” International Journal of Thermal Sciences, 176:107535, (2022).
  • [30] Khoshvaght-Aliabadi, M., Hosseinirad, E., Farsi, M. and Hormozi, F. “Heat transfer and flow characteristics of novel patterns of chevron minichannel heat sink: An insight into thermal management of microelectronic devices.” International Communications in Heat and Mass Transfer, 122, 105044, (2021).

NUMERICAL SIMULATION OF MICROCHANNEL ABSORBER AND DESORBER IN ABSORPTION REFRIGERATION SYSTEMS

Yıl 2024, Cilt: 27 Sayı: 5, 1823 - 1836
https://doi.org/10.2339/politeknik.1341852

Öz

Within the scope of the study, with respect to different channel heights (0,5mm – 1mm – 1,5mm), different solution inlet velocities (0,003-0,072 m/s and 0,075-0,0125 m/s), different types of solutions (LiBr-Water, LiBr/LiNO3/LiI/LiCl-Water, [EMIM][OAc]-Water, LiCl-Water) and different channel types (Straight channel, channel with localized bumps, channel with curves) an optimization study was studied on micro-channel and membrane-based absorber and desorber, and the results were examined. As a result, optimum conditions were determined with respect to solution inlet velocities and channel heights and it was determined that [EMIM][OAc]-Water solution is advantageous according to the absorption rate and pressure drop data, and LiCl-Water solution is advantageous according to desorption rates. Moreover, the changes in the channel structure provided a significant increase in the absorption rates, and against this caused a negative effect on the pressure drop.

Kaynakça

  • [1] Asfand, F., Stiriba, Y. and Bourouis, M. “CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems.” Energy, 91: 517-530, (2015).
  • [2] Sui, Z., Wu, W., You, T., Zheng, Z. and Leung, M. “Performance investigation and enhancement of membrane-contactor microchannel absorber towards compact absorption cooling.” International Journal of Heat and Mass Transfer, 169: 120978, (2021).
  • [3] Venegas, M., Vega, M., Garcia-Hernando, N. and Ruiz-Rivas, U. “Simplified model of a membrane-based rectangular micro-desorber for absorption chillers.” International Journal of Refrigeration, 71: 108-123, (2016).
  • [4] Vega, M., Garcia-Hernando, N. and Venegas, M. “Experimental performance of membrane water absorption in LiBr solution with and without cooling.” Applied Thermal Engineering, 180: 115786, (2020).
  • [5] Ishafani, N. R. and Moghaddam, S. “Absorption characteristics of lithium bromide (LiBr) solution constrained by superhydrophobic nanofibrous structures.” International Journal of Heat and Mass Transfer, 63: 82-90, (2013).
  • [6] Venegas, M., Garcia-Hernando, N. and Vega, M. “A parametric analysis on the effect of design and operating variables in a membrane-based desorber.” International Journal of Refrigeration, 99: 47-58, (2019).
  • [7] Zhai, C. and Wu, W. “Heat and mass transfer performance comparison of various absorbers/desorbers towards compact and efficient absorption heat pumps.” International Journal of Refrigeration, 127: 203-220, (2021).
  • [8] Determan, D. M. and Garimella, S. “Ammonia water desorption heat and mass transfer in microchannel devices.” International Journal of Refrigeration, 34: 1197-1208, (2011).
  • [9] Staedter, M. A. and Garimella, S. “Development of a micro-scale heat exchanger based, residential capacity ammonia–water absorption chiller.” International Journal of Refrigeration, 89: 93-103, (2018).
  • [10] Moghaddam, S., Chugh, D., Ishafani, R. N., Gluesenkamp, K. and Abdelaziz, O. “A hybrid absorption cycle for water heating, dehumidification, and evaporative cooling.” ASME 2015 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, San Francisco, 1-9, (2015).
  • [11] Özbaş, E. “Experimental Study Of Diffusion Absorption Refrigeration Systems Using Solar Energy.” Politeknik Dergisi, 21(2): 291-297, (2018).
  • [12] Lee, Y., Lee, G., Cho, J., Choi, B., Han, N. G. and Kim, D. K. “Evaluation of ionic liquids as absorbents for absorption refrigeration systems using hydrofluoro-olefin refrigerant.” Case Studies in Thermal Engineering, 45: 102920, (2023).
  • [13] Wang, S., Hou, K., Zhang, Z., Huang, S., Liu, X. and He, M. “Vapor-liquid equilibrium for dimethyl ether and three imidazolium ionic liquids as working pairs in absorption-refrigeration cycle.” Journal of Molecular Liquids, 380: 121742, (2023).
  • [14] Ho, C. J., Peng, J. K., Yang, T. F., Rashidi, S. and Yan, W. M. “Assessment of cooling performance of mini/micro-channel stacked double layer heat sink.” Alexandria Engineering Journal, 80: 465-474, (2023).
  • [15] Başaran, A. and Yurddaş, A. “Tek fazlı R600a soğutkan akışı için mikrokanal eşanjörün matematiksel modellemesi.” Politeknik Dergisi, 24(3): 797-810, (2021).
  • [16] Çakır, M. T. and Aktürk, D. “Numerical Investigation of Heat Transfer Performance in Laminar Flow of Nanofluids in the Wavy Micro-Channel.” Politeknik Dergisi, 25(4): 1769-1775, (2022).
  • [17] ANSYS Fluent Theory Guide, (2013).
  • [18] ANSYS Fluent UDF Manual, (2013).
  • [19] Kaita, Y. “Thermodynamic properties of lithium bromide-water solutions at high temperatures.” International Journal of Refrigeraation, 24: 374-390, (2001).
  • [20] Florides, G.A., Kalogirou, S.A., Tassou, S.A. and Wrobel, L.C. “Design and construction of a LiBr–water absorption machine.” Energy Conversion and Management, 44: 2483-2508, (2002).
  • [21] Koo, K.K. and Lee, H.R., “Densities, Viscosities, and Surface Tensions of the Water + Lithium Bromide + Lithium Nitrate + Lithium Iodide + Lithium Chloride.” System. J. Chem. Eng. Data, 44: 1175-1177, (1999).
  • [22] Koo, K.K., Lee, H., Jeong, S., Oh, Y., Park, D. and Baek, Y. “Solubilities, Vapor Pressures, and Heat Capacities of the Water + Lithium Bromide + Lithium Nitrate + Lithium Iodide + Lithium Chloride System.” International Journal of Thermophysics, 20(2): 589-600, (1998).
  • [23] Pineda, M.C.S., “Incremento De Purificación De Agua En Un Transformador Térmico Por Absorción Utilizando (LiBr+LiI+LiNO3+LiCl+H2O).” Yüksek Lisans Tezi, Universidad Autónoma Del Estado De Morelos, (2019).
  • [24] Ji, Q., Yin, Y., Wang, Y., Cao, B., Chen, W., Xu, G. and Li, X. “Comparative analysis of compression-absorption cascade heat pump using.” Energy Conversion and Management, 269: 116084, (2022).
  • [25] Zhang, F., Li, X, Y., Chen, G., Wang, T., Jin. X, T., Cheng, C, X., Li, G, P., Zhang, L, G., Zhang, B. and Zheng, F. “Thermophysical properties and water sorption characteristics of 1-ethyl-3-methylimidazolium acetate ionic liquid and water binary systems various ionic liquid-based working pairs.” International Communications in Heat and Mass Transfer, 127: 105558, (2021).
  • [26] Römich, C., Merkel, N, C., Valbonesi, A., Schaber, K., Sauer, S. and Schubert, T, J, S. “Thermodynamic Properties of Binary Mixtures of Water and Room-Temperature Ionic Liquids: Vapor Pressures, Heat Capacities, Densities, and Viscosities of Water + 1-Ethyl-3-methylimidazolium Acetate and Water + Diethylmethylammonium Methane Sulfonat.” Journal of Chemical Engineering Data, 57: 2258-2264, (2012).
  • [27] Conde, M. R., “Properties of aqueous solutions of lithium and calcium chlorides: formulations for use in air conditioning equipment design.” International Journal of Thermal Sciences, 43: 367-382, (2004).
  • [28] Chaudhari, S.K. and Patil, K. R., “Thermodynamic Properties of Aqueous Solutions of Lithium Chloride.” Physics and Chemistry of Liquids: An International Journal, 40(3): 317-325, (2001).
  • [29] Sun, L., Li, J., Xu, H., Ma, Jie. and Peng, H. “Numerical study on heat transfer and flow characteristics of novel microchannel heat sinks.” International Journal of Thermal Sciences, 176:107535, (2022).
  • [30] Khoshvaght-Aliabadi, M., Hosseinirad, E., Farsi, M. and Hormozi, F. “Heat transfer and flow characteristics of novel patterns of chevron minichannel heat sink: An insight into thermal management of microelectronic devices.” International Communications in Heat and Mass Transfer, 122, 105044, (2021).
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Akışkan Akışı, Isı ve Kütle Transferinde Hesaplamalı Yöntemler (Hesaplamalı Akışkanlar Dinamiği Dahil)
Bölüm Araştırma Makalesi
Yazarlar

Utku Türkmen 0009-0009-4731-5425

İbrahim Atılgan 0000-0002-7150-4797

Erken Görünüm Tarihi 15 Kasım 2023
Yayımlanma Tarihi
Gönderilme Tarihi 12 Ağustos 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 5

Kaynak Göster

APA Türkmen, U., & Atılgan, İ. (t.y.). ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE MİKRO KANALLI ABSORBER VE DESORBERİN SAYISAL OLARAK MODELLENMESİ. Politeknik Dergisi, 27(5), 1823-1836. https://doi.org/10.2339/politeknik.1341852
AMA Türkmen U, Atılgan İ. ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE MİKRO KANALLI ABSORBER VE DESORBERİN SAYISAL OLARAK MODELLENMESİ. Politeknik Dergisi. 27(5):1823-1836. doi:10.2339/politeknik.1341852
Chicago Türkmen, Utku, ve İbrahim Atılgan. “ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE MİKRO KANALLI ABSORBER VE DESORBERİN SAYISAL OLARAK MODELLENMESİ”. Politeknik Dergisi 27, sy. 5 t.y.: 1823-36. https://doi.org/10.2339/politeknik.1341852.
EndNote Türkmen U, Atılgan İ ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE MİKRO KANALLI ABSORBER VE DESORBERİN SAYISAL OLARAK MODELLENMESİ. Politeknik Dergisi 27 5 1823–1836.
IEEE U. Türkmen ve İ. Atılgan, “ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE MİKRO KANALLI ABSORBER VE DESORBERİN SAYISAL OLARAK MODELLENMESİ”, Politeknik Dergisi, c. 27, sy. 5, ss. 1823–1836, doi: 10.2339/politeknik.1341852.
ISNAD Türkmen, Utku - Atılgan, İbrahim. “ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE MİKRO KANALLI ABSORBER VE DESORBERİN SAYISAL OLARAK MODELLENMESİ”. Politeknik Dergisi 27/5 (t.y.), 1823-1836. https://doi.org/10.2339/politeknik.1341852.
JAMA Türkmen U, Atılgan İ. ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE MİKRO KANALLI ABSORBER VE DESORBERİN SAYISAL OLARAK MODELLENMESİ. Politeknik Dergisi.;27:1823–1836.
MLA Türkmen, Utku ve İbrahim Atılgan. “ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE MİKRO KANALLI ABSORBER VE DESORBERİN SAYISAL OLARAK MODELLENMESİ”. Politeknik Dergisi, c. 27, sy. 5, ss. 1823-36, doi:10.2339/politeknik.1341852.
Vancouver Türkmen U, Atılgan İ. ABSORBSİYONLU SOĞUTMA SİSTEMLERİNDE MİKRO KANALLI ABSORBER VE DESORBERİN SAYISAL OLARAK MODELLENMESİ. Politeknik Dergisi. 27(5):1823-36.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.