Araştırma Makalesi
BibTex RIS Kaynak Göster

Tornalama İşleminde Kesici Ucu Pozisyonunun Geometrik Toleranslar ve Yüzey Pürüzlülüğüne Etkisinin Araştırılması

Yıl 2025, Cilt: 28 Sayı: 2, 479 - 489
https://doi.org/10.2339/politeknik.1490439

Öz

Kesici takımlar genellikle CNC torna tezgahlarında doğrudan bağlanarak kullanılır. Takımın iş parçasının merkezine göre konumu kontrol edilmez. Kesici takımların standart ölçülerde üretildiği varsayılır. Ancak kesici takımlar, uç, ayar parçası ve tutucu gibi birçok parçadan oluşur. Birçok firma bu parçaları evrensel toleranslarda imalatını yapmaya çalışmaktadır. Bu çalışmada, kesici ucun işlenmiş iş parçası ekseninden yüksekliğinin etkilerini incelemek için tornalama deneyleri yapılmıştır. AISI 304 paslanmaz çelik malzeme, negatif talaş açısına sahip karbür kesici takımlar kullanılarak bir CNC torna tezgahında tornalanmıştır. Kesici takımlar, iş parçası ekseninde (0.0 mm), iş parçası ekseninin üstünde (+0.5 mm) ve iş parçası ekseninin altında (-0.5 mm) olmak üzere üç seviyede test edilmiştir. Deneylerde kesme parametreleri için üç farklı kesme hızı (100, 150 ve 225 m/dak), üç farklı ilerleme hızı (0.15, 0.25 ve 0.35 mm/dev), üç farklı kesme derinliği (0.8, 1.3 ve 2 mm) ve iki farklı kesici uç yarıçapı (0.4 ve 0.8 mm) tercih edilmiştir. Testler için Taguchi yönteminde bir seçenek olan L36 modeli seçilmiştir. İşlenen yüzeylerde yüzey pürüzlülüğü, dairesellik ve silindiriklik kontrol edilmiştir. Sonuçlar Taguchi ve ANOVA analizleri ile değerlendirilmiştir. Sonuçlar, kesici takımın yüksekliğinin işlenen yüzeyin geometrisini etkilediğini ortaya koymuştur. Etki oranları, yüzey pürüzlülüğü üzerinde %1.37, dairesellik sapması üzerinde %10.89 ve silindiriklik sapması üzerinde %4.49'dur. H:+0.5 yüksekliğinin, yüzey pürüzlülüğü ve silindiriklik üzerinde olumlu bir etkiye sahip olduğu tespit edilmiştir.

Kaynakça

  • [1] Akkurt M. “Talaş Kaldırma Yöntemleri ve Takım Tezgahları”, Birsen, İstanbul, (2000).
  • [2] Sahin Y., “Talaş kaldırma presipleri”, Gazi, Ankara, (2003).
  • [3] Asal Ö, Dilipak H, Yalçinkaya A, Unal S. “Modeling With Anfis Of Surface Roughness Using Minimum Quantity Lubrication Technique In Milling Process”, International Journal of Innovative Engineering Applications, 5(2): 162-170, (2021).
  • [4] Gokkaya H, Sur G, Dilipak H., “The Experimental Investigation Of The Effects Of Uncoated Cementit Carbide Insert And Cutting Parameters On Surface Roughness”, Pamukkale University Journal of Engineering Sciences, 12(1): 59-64, (2006).
  • [5] Kayır Y, Aytürk A., “Investigation of Machinability Characteristics of AISI 316Ti Stainless Steel”, Pamukkale University Journal of Engineering Sciences, 18(1): 61-71, (2012).
  • [6] Degarmo E.P, Black J.T, Kohser A.R. “Materials and Processing in Manufacturing”, Macmilan Publishing Company, USA, (1988).
  • [7] Groover M. P., “Fundamentals of Modern Manufacturing”, New Jersey: Wiley, (1996).
  • [8] Demirer E, Kayir Y., “AISI304 Paslanmaz Çeliğin Tornalamasında Kesici Takım Yükseklik Ayarının Kesme Kuvvetlerine Etkisinin Taguchi Ve ANOVA Yöntemiyle Analizi”, Gazi Journal Of Engineering Sciences, 8(1): 74 - 88, (2022).
  • [9] Sourabh P, Bandyopadhyay PP, Paul S., “Minimisation of specific cutting energy and back force in turning of AISI 1060 steel”, Proceedings of the Institution of Mechanical Engineers, 232(11): (2017).
  • [10] Sadredine A, Nouredine O., “Experimental study of the combined influence of the tool geometry parameters on the cutting forces and tool vibrations”, Int J Adv Manuf Technology, (2015).
  • [11] Lata S, Hitesh. A., “Design Insight for Substitution of Metal Shims with Reverse Engineered Element in Tool Post for Alignment of Tool-Work Center”, European Journal of Engineering Science and Technology, 3(1):114-129, (2020).
  • [12] Jana D. R, Mandal T., “Mathematical Calculation of Effects on Tool Setting on Tool Cutting Angle”, Proceedings of the International MultiConference of Engineers, March. 19-21, (2008).
  • [13] Fang D, Lee N. J. A., “new tooling mechanism for CNC lathes”, International Journal of Machine Tools and Manufacture, 41: 89-101, (2001).
  • [14] Bono M, Hibbard R. “A flexure-based tool holder for sub-µm positioning of a single point cutting tool on a four-axis lathe”, Precision Engineering, 31(2):169-176, (2007).
  • [15] Ma T., “A Height Adjustable Tool Holder”, Applied Mechanics and Materials, 496(1): 873-876, (2014).
  • [16] Shaw, M. “Metal cutting principles. 2nd ed”, Oxford University Press, New York, (2005).
  • [17] Chanthana D, Tangjitsitcharoen S A. “Study of Relation between Roundness and Cutting Force in CNC Turning Process”, Applied Mechanics and Materials, 799(800): 366-371, (2015).
  • [18] Wang M, Cheraghi S H, Masud A M. “Circularity error evaluation theory and algorithm”, Precision Engineering, 23(3): 164-176, (1999).
  • [19] Görög A. “Number of Points for Roundness Measurement - Measured Results Comparison”, Research Papers Research Papers Faculty of Materials Science and Technology in Trnava, 19(30): 19-24, (2011).
  • [20] Pınar A. M, Güllü A. “Examination of the Methods Used in Circularity Error Measurement”, Journal of Polytechnic, 10(2): 137-144, (2007).
  • [21] Mavi A. “Determination of Optimum Cutting Parameters Affecting the Surface Form Properties in the Ductile Stainless Steels with Gray Relational Analysis Method”, Gazi University Journal Of Science Part C: Desıgn And Technology, 6(3): 634-643, (2018).
  • [22] Engineer Essentials LLC. https://www.gdandtbasics.com/circularity; [accessed 10.02. 2023].
  • [23] Keencuteer Tools Store. https://www.aliexpress.com; 2022 [accessed 25.06.2023].
  • [24] Demirer E. “The Effect Of Cutting Tool Height Setting On Geometric Tolerances, Surface Roughness And Cutting Forces In Turning AISI 304 Stainless Steel”, MSc Thesis, University of Gazi, Turkey, (2022).
  • [25] Korloy Cutting Tools Catalogue. http://www.korloy.com; [accessed 05.01. 2022].
  • [26] Montgomery, D. C. “Design and Analysis of Experiments (Eight edition)”, New York: Wiley, (2013).
  • [27] Yurdakul, M., Güneş, S., İç, Y. T., “Improvement Of The Surface Quality In The Honing Process Usıng Taguchi Method”, Journal Of The Faculty Of Engineering And Architecture Of Gazi Unıversity, 31(2): 347-360, (2016).
  • [28] Asiltürk İ, Akkuş, H. “Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method”, Measurement, 44(9): 1697-1704, (2011).
  • [29] Negrete C C., “Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA”, Journal of Cleaner Production, 53(1): 1-9, (2013).
  • [30] Debnath S, Reddy M M, Yi Q S., “Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method”, Measurement, 1(78): 111-119, (2015).
  • [31] Sayeed Ahmed G M., Quadri S H, Mohiuddin M S., “Optimization of feed and radial force in turning process by using Taguchi design approach”, Materials Today: Proceedings, 2(4): 3277-3285, (2015).
  • [32] Günay M., “Optimization with Taguchi method of cutting parameters and tool noise radius in machining of AISI 316l Steel”, Journal of Gazi University Faculty of Engineering and Architecture, 28(3): 437-444, (2013).
  • [33] Kayir Y, Aslan S, Aytürk, A., “Analyzing the effects of cutting tools geometry on the Ttrning of AISI 316Ti stainles steel witth Taguchi method”, Journal of Gazi University Faculty of Engineering and Architecture, 28(2): 363-372, (2014).
  • [34] Rao V D, Mahaboob S R, Saqheed K Z., “Multi-objective optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated tool”, Materials Today: Proceedings, 5(1): 25789–25797, (2018).
  • [35] Kopac J, Bahor M, Mater J., “Interaction of the technological history of a workpiece material and the machining parameters on the desired quality of the surface roughness of a product”, Process. Tech. 92(93): 381–387, (1999).
  • [36] Faraway J J. “Practical Regression and Anova using R”, Bath: University of Bath, (2002).
  • [37] Kul S. “Interpretatıon of statistical results: What Is P value and confıdence interval?” Bulletin of Pleura-Plevra. 8(1): 11-13, (2014).
  • [38] Hadi Y A, Varghese S. and Ibrahim A A. “Effects Of Machining Parameters In Turnıng On Roundness Error Of Machined Components”, International Journal of Materials Engineering and Technology, 2(1): 55-68, (2009).
  • [39] Rico L, Naranjo A, Noriega S, et al. “Effect of cutting parameters on the roundness of cylindrical bars turned of 1018 steel”, Proceedings of the 15th Annual International Conference on Industrial Engineering Theory, Burgos, Spain, (2010).

Investigation of the Effect of the Position of the Cutting Tool Tip on the Geometric Tolerances and Surface Roughness in Turning Process

Yıl 2025, Cilt: 28 Sayı: 2, 479 - 489
https://doi.org/10.2339/politeknik.1490439

Öz

Normally, cutting tool tools are directly used by assembling on the CNC turning machines. The position of the tool is not controlled relative to the centre of the work piece. It is assumed that the cutting tools are manufactured in standard sizes. However, the cutting tools composed of many parts, such as insert, shim and holder, etc. Many companies can manufacture these parts in universal tolerances. In this study, turning tests were carried out to investigate the effects of the height of the insert from the machined workpiece axis. AISI 304 stainless steel material was turned on a CNC lathe using a carbide cutting tool with a negative backward rake angle. The cutting tool were tested for three levels, such as, at the workpiece axis (0.0 mm), above of the workpiece axis (+0.5 mm) and below of the work piece axis (-0.5 mm). In the experiments, three different cutting speeds (100, 150, and 225 m/min), three different feed rates (0.15, 0.25 and 0.35 mm/rev), three different depths of cut (0.8, 1.3 and 2 mm) and two different insert radius (0.4 and 0.8 mm) were preferred for the cutting parameters. L36 model, which is an option in Taguchi method, were selected to perform the tests. Surface roughness, circularity and cylindricity on the machined surfaceses were controlled. The results were evaluated by Taguchi and ANOVA analyses. The results figured out that the height of the cutting tool affected the geometries of the machined surface. The rate of the effects is 1.37% on the surface roughness, 10.89% on the circularity deviation and 4.49% on the cylindricity deviation. The H:+0.5 lead to have a positive impact on surface roughness and the cylindricity deviation.

Kaynakça

  • [1] Akkurt M. “Talaş Kaldırma Yöntemleri ve Takım Tezgahları”, Birsen, İstanbul, (2000).
  • [2] Sahin Y., “Talaş kaldırma presipleri”, Gazi, Ankara, (2003).
  • [3] Asal Ö, Dilipak H, Yalçinkaya A, Unal S. “Modeling With Anfis Of Surface Roughness Using Minimum Quantity Lubrication Technique In Milling Process”, International Journal of Innovative Engineering Applications, 5(2): 162-170, (2021).
  • [4] Gokkaya H, Sur G, Dilipak H., “The Experimental Investigation Of The Effects Of Uncoated Cementit Carbide Insert And Cutting Parameters On Surface Roughness”, Pamukkale University Journal of Engineering Sciences, 12(1): 59-64, (2006).
  • [5] Kayır Y, Aytürk A., “Investigation of Machinability Characteristics of AISI 316Ti Stainless Steel”, Pamukkale University Journal of Engineering Sciences, 18(1): 61-71, (2012).
  • [6] Degarmo E.P, Black J.T, Kohser A.R. “Materials and Processing in Manufacturing”, Macmilan Publishing Company, USA, (1988).
  • [7] Groover M. P., “Fundamentals of Modern Manufacturing”, New Jersey: Wiley, (1996).
  • [8] Demirer E, Kayir Y., “AISI304 Paslanmaz Çeliğin Tornalamasında Kesici Takım Yükseklik Ayarının Kesme Kuvvetlerine Etkisinin Taguchi Ve ANOVA Yöntemiyle Analizi”, Gazi Journal Of Engineering Sciences, 8(1): 74 - 88, (2022).
  • [9] Sourabh P, Bandyopadhyay PP, Paul S., “Minimisation of specific cutting energy and back force in turning of AISI 1060 steel”, Proceedings of the Institution of Mechanical Engineers, 232(11): (2017).
  • [10] Sadredine A, Nouredine O., “Experimental study of the combined influence of the tool geometry parameters on the cutting forces and tool vibrations”, Int J Adv Manuf Technology, (2015).
  • [11] Lata S, Hitesh. A., “Design Insight for Substitution of Metal Shims with Reverse Engineered Element in Tool Post for Alignment of Tool-Work Center”, European Journal of Engineering Science and Technology, 3(1):114-129, (2020).
  • [12] Jana D. R, Mandal T., “Mathematical Calculation of Effects on Tool Setting on Tool Cutting Angle”, Proceedings of the International MultiConference of Engineers, March. 19-21, (2008).
  • [13] Fang D, Lee N. J. A., “new tooling mechanism for CNC lathes”, International Journal of Machine Tools and Manufacture, 41: 89-101, (2001).
  • [14] Bono M, Hibbard R. “A flexure-based tool holder for sub-µm positioning of a single point cutting tool on a four-axis lathe”, Precision Engineering, 31(2):169-176, (2007).
  • [15] Ma T., “A Height Adjustable Tool Holder”, Applied Mechanics and Materials, 496(1): 873-876, (2014).
  • [16] Shaw, M. “Metal cutting principles. 2nd ed”, Oxford University Press, New York, (2005).
  • [17] Chanthana D, Tangjitsitcharoen S A. “Study of Relation between Roundness and Cutting Force in CNC Turning Process”, Applied Mechanics and Materials, 799(800): 366-371, (2015).
  • [18] Wang M, Cheraghi S H, Masud A M. “Circularity error evaluation theory and algorithm”, Precision Engineering, 23(3): 164-176, (1999).
  • [19] Görög A. “Number of Points for Roundness Measurement - Measured Results Comparison”, Research Papers Research Papers Faculty of Materials Science and Technology in Trnava, 19(30): 19-24, (2011).
  • [20] Pınar A. M, Güllü A. “Examination of the Methods Used in Circularity Error Measurement”, Journal of Polytechnic, 10(2): 137-144, (2007).
  • [21] Mavi A. “Determination of Optimum Cutting Parameters Affecting the Surface Form Properties in the Ductile Stainless Steels with Gray Relational Analysis Method”, Gazi University Journal Of Science Part C: Desıgn And Technology, 6(3): 634-643, (2018).
  • [22] Engineer Essentials LLC. https://www.gdandtbasics.com/circularity; [accessed 10.02. 2023].
  • [23] Keencuteer Tools Store. https://www.aliexpress.com; 2022 [accessed 25.06.2023].
  • [24] Demirer E. “The Effect Of Cutting Tool Height Setting On Geometric Tolerances, Surface Roughness And Cutting Forces In Turning AISI 304 Stainless Steel”, MSc Thesis, University of Gazi, Turkey, (2022).
  • [25] Korloy Cutting Tools Catalogue. http://www.korloy.com; [accessed 05.01. 2022].
  • [26] Montgomery, D. C. “Design and Analysis of Experiments (Eight edition)”, New York: Wiley, (2013).
  • [27] Yurdakul, M., Güneş, S., İç, Y. T., “Improvement Of The Surface Quality In The Honing Process Usıng Taguchi Method”, Journal Of The Faculty Of Engineering And Architecture Of Gazi Unıversity, 31(2): 347-360, (2016).
  • [28] Asiltürk İ, Akkuş, H. “Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method”, Measurement, 44(9): 1697-1704, (2011).
  • [29] Negrete C C., “Optimization of cutting parameters for minimizing energy consumption in turning of AISI 6061 T6 using Taguchi methodology and ANOVA”, Journal of Cleaner Production, 53(1): 1-9, (2013).
  • [30] Debnath S, Reddy M M, Yi Q S., “Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in turning process using Taguchi method”, Measurement, 1(78): 111-119, (2015).
  • [31] Sayeed Ahmed G M., Quadri S H, Mohiuddin M S., “Optimization of feed and radial force in turning process by using Taguchi design approach”, Materials Today: Proceedings, 2(4): 3277-3285, (2015).
  • [32] Günay M., “Optimization with Taguchi method of cutting parameters and tool noise radius in machining of AISI 316l Steel”, Journal of Gazi University Faculty of Engineering and Architecture, 28(3): 437-444, (2013).
  • [33] Kayir Y, Aslan S, Aytürk, A., “Analyzing the effects of cutting tools geometry on the Ttrning of AISI 316Ti stainles steel witth Taguchi method”, Journal of Gazi University Faculty of Engineering and Architecture, 28(2): 363-372, (2014).
  • [34] Rao V D, Mahaboob S R, Saqheed K Z., “Multi-objective optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated tool”, Materials Today: Proceedings, 5(1): 25789–25797, (2018).
  • [35] Kopac J, Bahor M, Mater J., “Interaction of the technological history of a workpiece material and the machining parameters on the desired quality of the surface roughness of a product”, Process. Tech. 92(93): 381–387, (1999).
  • [36] Faraway J J. “Practical Regression and Anova using R”, Bath: University of Bath, (2002).
  • [37] Kul S. “Interpretatıon of statistical results: What Is P value and confıdence interval?” Bulletin of Pleura-Plevra. 8(1): 11-13, (2014).
  • [38] Hadi Y A, Varghese S. and Ibrahim A A. “Effects Of Machining Parameters In Turnıng On Roundness Error Of Machined Components”, International Journal of Materials Engineering and Technology, 2(1): 55-68, (2009).
  • [39] Rico L, Naranjo A, Noriega S, et al. “Effect of cutting parameters on the roundness of cylindrical bars turned of 1018 steel”, Proceedings of the 15th Annual International Conference on Industrial Engineering Theory, Burgos, Spain, (2010).
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İmalat Yönetimi
Bölüm Araştırma Makalesi
Yazarlar

Yunus Kayır 0000-0001-6793-7103

Ercan Demirer 0000-0001-5265-7854

Erken Görünüm Tarihi 8 Ağustos 2024
Yayımlanma Tarihi
Gönderilme Tarihi 31 Mayıs 2024
Kabul Tarihi 31 Temmuz 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 2

Kaynak Göster

APA Kayır, Y., & Demirer, E. (t.y.). Investigation of the Effect of the Position of the Cutting Tool Tip on the Geometric Tolerances and Surface Roughness in Turning Process. Politeknik Dergisi, 28(2), 479-489. https://doi.org/10.2339/politeknik.1490439
AMA Kayır Y, Demirer E. Investigation of the Effect of the Position of the Cutting Tool Tip on the Geometric Tolerances and Surface Roughness in Turning Process. Politeknik Dergisi. 28(2):479-489. doi:10.2339/politeknik.1490439
Chicago Kayır, Yunus, ve Ercan Demirer. “Investigation of the Effect of the Position of the Cutting Tool Tip on the Geometric Tolerances and Surface Roughness in Turning Process”. Politeknik Dergisi 28, sy. 2 t.y.: 479-89. https://doi.org/10.2339/politeknik.1490439.
EndNote Kayır Y, Demirer E Investigation of the Effect of the Position of the Cutting Tool Tip on the Geometric Tolerances and Surface Roughness in Turning Process. Politeknik Dergisi 28 2 479–489.
IEEE Y. Kayır ve E. Demirer, “Investigation of the Effect of the Position of the Cutting Tool Tip on the Geometric Tolerances and Surface Roughness in Turning Process”, Politeknik Dergisi, c. 28, sy. 2, ss. 479–489, doi: 10.2339/politeknik.1490439.
ISNAD Kayır, Yunus - Demirer, Ercan. “Investigation of the Effect of the Position of the Cutting Tool Tip on the Geometric Tolerances and Surface Roughness in Turning Process”. Politeknik Dergisi 28/2 (t.y.), 479-489. https://doi.org/10.2339/politeknik.1490439.
JAMA Kayır Y, Demirer E. Investigation of the Effect of the Position of the Cutting Tool Tip on the Geometric Tolerances and Surface Roughness in Turning Process. Politeknik Dergisi.;28:479–489.
MLA Kayır, Yunus ve Ercan Demirer. “Investigation of the Effect of the Position of the Cutting Tool Tip on the Geometric Tolerances and Surface Roughness in Turning Process”. Politeknik Dergisi, c. 28, sy. 2, ss. 479-8, doi:10.2339/politeknik.1490439.
Vancouver Kayır Y, Demirer E. Investigation of the Effect of the Position of the Cutting Tool Tip on the Geometric Tolerances and Surface Roughness in Turning Process. Politeknik Dergisi. 28(2):479-8.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.