\noindent {\bf ABSTRACT}
\end{center}
\par In this paper, we investigate the mild solutions of a nonlocal Cauchy problem for nonautonomous fractional evolution equations
\begin{align*}
\begin{cases}
\frac{d^q u(t)}{dt^q} &\quad =~~ -A(t)u(t)+f(t,(K_1 u)(t),(K_2 u)(t),\dots,(K_n u)(t),t \in I=[0,T] \\
\Delta y|_{t=t_k} &\quad =~~ I_k(y(t_k^-)),t = t_k, k = 1,2,\dots,m, \\
u(0) &\quad =~~ A^{-1}(0)g(u)+u_0
\end{cases}
\end{align*}
in Banach spaces, where $T>0, 0<q<1.$ New results are obtained by using Sadovskii's fixed point theorem and the Banach contraction mapping principle. An example is given to illustrate the theory.
Impulsive Fractional Evolution Nonautonomous Measure of noncompactness
Birincil Dil | İngilizce |
---|---|
Bölüm | Articles |
Yazarlar | |
Yayımlanma Tarihi | 14 Kasım 2018 |
Yayımlandığı Sayı | Yıl 2018 Cilt: 1 Sayı: 3 |