Araştırma Makalesi
BibTex RIS Kaynak Göster

CBS Ağ Analizi Yöntemleri ile Hayvansal Gübre Kaynaklı Biyogaz Üretim Tesisi Yer Seçimi: Eskişehir Örneği

Yıl 2023, , 187 - 197, 28.09.2023
https://doi.org/10.48123/rsgis.1220098

Öz

Dünya enerji ihtiyacının yüzde 63’ü fosil yakıt kaynaklarından sağlanmaktadır. Bu kaynakların zaman içerisinde azalması ve sıfır karbon emisyonu destekli projelere ilginin artması sonucunda tüm dünya genelinde yenilenebilir enerji kaynaklarının üretimi ve kullanımı yaygınlaşmaya başlamıştır. Yenilenebilir enerji kaynakları arasında güneş, rüzgâr, jeotermal, hidroelektrik ve biyokütle başlıca kaynaklar olarak yer almaktadır. Biyokütle hem kaynak ürün çeşitliliği hem de düşük kurulum maliyetleri açısından mevcut yenilenebilir enerji kaynakları ile kıyaslandığında ön plana çıkmaktadır. Biyokütle enerjisi için gerekli ham maddeler arasında temel olarak tarım ve hayvan kaynaklı organik atıklar gösterilebilir. Ham maddelerin farklı konumlardan elde edilerek enerji üretim tesisine transfer edilmesi sırasında Coğrafi Bilgi Sistemleri yardımı ile nakliye maliyetleri minimuma indirilerek üretim tesisi için en uygun yer seçimi belirlenebilmektedir. Bu kapsamda, pilot proje olarak seçilen Eskişehir ili ve ilçelerindeki büyükbaş ve küçükbaş hayvanların oluşturduğu organik atık miktarları üzerinden yapılan değerlendirme sonucu ağ analizleri – konum tahsis analizi (location-allocation) yardımı ile biyokütle (biyogaz) santrali için en uygun yer belirleme çalışması yapılmıştır.

Kaynakça

  • Bomani, B. M., Bulzan, D. L., Centeno-Gomez, D. I., & Hendricks, R. C. (2009). Biofuels as an alternative energy source for aviation-a survey (Report No: 215587). Washington, DC: NASA.
  • Comber, A., Dickie, J., Jarvis, C., Phillips, M., & Tansey, K. (2015). Locating bioenergy facilities using a modified GIS-based location–allocation-algorithm: Considering the spatial distribution of resource supply. Applied Energy, 154, 309-316.
  • Çetin, N. (1994). Endüstride fabrika yer seçimi (Yüksek Lisans Tezi). Fen Bilimleri Enstitüsü, Yıldız Teknik Üniversitesi, İstanbul.
  • Davenport, (2015, Aralık 12). Nations Approve Landmark Climate Accord in Paris. Retrieved from https://www.nytimes.com/2015/12/13/world/europe/climate-changeaccord-paris.html.
  • de Jong, S., Hoefnagels, R., Wetterlund, E., Pettersson, K., Faaij, A., & Junginger, M. (2017). Cost optimization of biofuel production–The impact of scale, integration, transport and supply chain configurations. Applied energy, 195, 1055-1070.
  • Dilworth, J. (1992). Operation Management, Design Planning and Control for Manufacturing and Service. New York, NY: Mcgraw-Hill.
  • Ferrari, G., Marinello, F., Lemmer, A., Ranzato, C., & Pezzuolo, A. (2022). Network analysis for optimal biomethane plant location through a multidisciplinary approach. Journal of Cleaner Production, 378, 134484. doi: 10.1016/j.jclepro.2022.134484.
  • Höhn, J., Lehtonen, E., Rasi, S., & Rintala, J. (2014). A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Applied Energy, 113, 1-10.
  • IEA (2023, Şubat 15). World Energy Balances 2016. International Energy Agency. Retrieved from https://webstore.iea.org/ world-energy-balances-2018.
  • Kaynarca, H., Kılıç, T., Açıkkalp, E., & Kandemir, S. Y. (2021). Eskişehir’in Biyogaz Potansiyelinin Değerlendirilmesi. Coğrafya Dergisi, 42, 271-282.
  • Kapluhan, E. (2014). Enerji coğrafyası açısından bir inceleme: biyokütle enerjisinin dünyadaki ve Türkiye’deki kullanım durumu. Marmara Coğrafya Dergisi, 30, 97-125.
  • Kılıç, F. Ç. (2007). Biyogaz, önemi, genel durumu ve Türkiye'deki yeri. Renewable Energy World, 8(6), 94-106.
  • Kim, S., Kim, S., & Kiniry, J. R. (2018). Two-phase simulation-based location-allocation optimization of biomass storage distribution. Simulation Modelling Practice and Theory, 86, 155-168.
  • Kumar, A., Sokhansanj, S., & Flynn, P. C. (2006). Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems. Applied Biochemistry and Biotechnology, 129(1), 71-87.
  • Kurka, T., Jefferies, C., & Blackwood, D. (2012). GIS-based location suitability of decentralized, medium scale bioenergy developments to estimate transport CO2 emissions and costs. Biomass and Bioenergy, 46, 366-379.
  • Mediavilla, M., de Castro, C., Capellán, I., Miguel, L. J., Arto, I., & Frechoso, F. (2013). The transition towards renewable energies: Physical limits and temporal conditions. Energy Policy, 52, 297–311.
  • Müftüoğlu, T. (1989). Yatırım projelerinin değerlendirilmesi (Rapor No: 283). Ankara: Makina Mühendisleri Odası.
  • Perpina, C., Alfonso, D., Pérez-Navarro, A., Penalvo, E., Vargas, C. & Cárdenas, R. (2009). Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renewable Energy, 34(3), 555-565.
  • Sahoo, K., Mani, S., Das, L., & Bettinger, P. (2018). GIS-based assessment of sustainable crop residues for optimal siting of biogas plants. Biomass and Bioenergy, 110, 63-74.
  • Scaparra, P. M., & Scutella, M. G. (2001). Facilities, Locations, Customers: Building Blocks of Location Models. A Survey, (Technical Report TR-01-18). Pisa, Italy: Universits' degli Studi di Pisa.
  • Somer, T. G., (1979). Fabrika kuruluşunda yer seçimi (Rapor No: 14). Ankara: Makina Mühendisleri Odası.
  • Stevenson, W. J. & Hojati, M. (2007). Operations management. Boston: McGraw-Hill Irwin.
  • Takan, M. A. V., & Kandemir, S. Y. (2021). Türkiye’deki Jeotermal Enerjinin Birincil Enerji Arzı Yönünden Değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, 7(2), 381-385.
  • UN. (2023, Mart 5). Global Sustainable Development Report 2019: Future Is Now - Science for Achieving Sustainable Development. United Nations (UN). Retrieved from https://sustainabledevelopment.un.org/content/documents/ 24797GSDR_report_2019.pdf.
  • Valenti, F., Parlato, M. C., Pecorino, B., & Selvaggi, R. (2023). Enhancement of sustainable bioenergy production by valorising tomato residues: A GIS-based model. Science of The Total Environment, 869, 161766. doi: 10.1016/j.biombioe.2015.10.015.
  • Wang, Z., Duan, Y., & Huo, J. (2021). Maximal covering location problem of smart recycling infrastructure for recyclable waste in an uncertain environment. Waste Management & Research, 39(2), 396-404.

Site Selection of Animal Manure Operated Biogas Power Plant with GIS Network Analysis: Eskişehir Case

Yıl 2023, , 187 - 197, 28.09.2023
https://doi.org/10.48123/rsgis.1220098

Öz

Fossil fuel sources meet 63 percent of the world's energy demands. The development and use of renewable energy resources have spread worldwide as a consequence of the decline in fossil fuel sources through time and a growth in interest in projects backed by zero carbon emissions. Solar, wind, geothermal, hydropower, and biomass are the most common renewable energy sources. In terms of supply diversity and inexpensive installation costs, biomass stands out among renewable energy sources. Organic wastes of agricultural and animal origin can be found among the raw materials necessary for biomass energy. Transportation expenses are minimized during the transfer of raw materials from various locations to the production facility by the help of Geographic Information Systems (GIS), and the most appropriate site for the production facility may be determined. In this context, as a result of an evaluation of the quantity of organic waste created by bovine and ovine in Eskişehir province and its districts, the most appropriate location for the biomass (biogas) power plant has been tried to be established using network analysis – location allocation.

Kaynakça

  • Bomani, B. M., Bulzan, D. L., Centeno-Gomez, D. I., & Hendricks, R. C. (2009). Biofuels as an alternative energy source for aviation-a survey (Report No: 215587). Washington, DC: NASA.
  • Comber, A., Dickie, J., Jarvis, C., Phillips, M., & Tansey, K. (2015). Locating bioenergy facilities using a modified GIS-based location–allocation-algorithm: Considering the spatial distribution of resource supply. Applied Energy, 154, 309-316.
  • Çetin, N. (1994). Endüstride fabrika yer seçimi (Yüksek Lisans Tezi). Fen Bilimleri Enstitüsü, Yıldız Teknik Üniversitesi, İstanbul.
  • Davenport, (2015, Aralık 12). Nations Approve Landmark Climate Accord in Paris. Retrieved from https://www.nytimes.com/2015/12/13/world/europe/climate-changeaccord-paris.html.
  • de Jong, S., Hoefnagels, R., Wetterlund, E., Pettersson, K., Faaij, A., & Junginger, M. (2017). Cost optimization of biofuel production–The impact of scale, integration, transport and supply chain configurations. Applied energy, 195, 1055-1070.
  • Dilworth, J. (1992). Operation Management, Design Planning and Control for Manufacturing and Service. New York, NY: Mcgraw-Hill.
  • Ferrari, G., Marinello, F., Lemmer, A., Ranzato, C., & Pezzuolo, A. (2022). Network analysis for optimal biomethane plant location through a multidisciplinary approach. Journal of Cleaner Production, 378, 134484. doi: 10.1016/j.jclepro.2022.134484.
  • Höhn, J., Lehtonen, E., Rasi, S., & Rintala, J. (2014). A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland. Applied Energy, 113, 1-10.
  • IEA (2023, Şubat 15). World Energy Balances 2016. International Energy Agency. Retrieved from https://webstore.iea.org/ world-energy-balances-2018.
  • Kaynarca, H., Kılıç, T., Açıkkalp, E., & Kandemir, S. Y. (2021). Eskişehir’in Biyogaz Potansiyelinin Değerlendirilmesi. Coğrafya Dergisi, 42, 271-282.
  • Kapluhan, E. (2014). Enerji coğrafyası açısından bir inceleme: biyokütle enerjisinin dünyadaki ve Türkiye’deki kullanım durumu. Marmara Coğrafya Dergisi, 30, 97-125.
  • Kılıç, F. Ç. (2007). Biyogaz, önemi, genel durumu ve Türkiye'deki yeri. Renewable Energy World, 8(6), 94-106.
  • Kim, S., Kim, S., & Kiniry, J. R. (2018). Two-phase simulation-based location-allocation optimization of biomass storage distribution. Simulation Modelling Practice and Theory, 86, 155-168.
  • Kumar, A., Sokhansanj, S., & Flynn, P. C. (2006). Development of a multicriteria assessment model for ranking biomass feedstock collection and transportation systems. Applied Biochemistry and Biotechnology, 129(1), 71-87.
  • Kurka, T., Jefferies, C., & Blackwood, D. (2012). GIS-based location suitability of decentralized, medium scale bioenergy developments to estimate transport CO2 emissions and costs. Biomass and Bioenergy, 46, 366-379.
  • Mediavilla, M., de Castro, C., Capellán, I., Miguel, L. J., Arto, I., & Frechoso, F. (2013). The transition towards renewable energies: Physical limits and temporal conditions. Energy Policy, 52, 297–311.
  • Müftüoğlu, T. (1989). Yatırım projelerinin değerlendirilmesi (Rapor No: 283). Ankara: Makina Mühendisleri Odası.
  • Perpina, C., Alfonso, D., Pérez-Navarro, A., Penalvo, E., Vargas, C. & Cárdenas, R. (2009). Methodology based on Geographic Information Systems for biomass logistics and transport optimisation. Renewable Energy, 34(3), 555-565.
  • Sahoo, K., Mani, S., Das, L., & Bettinger, P. (2018). GIS-based assessment of sustainable crop residues for optimal siting of biogas plants. Biomass and Bioenergy, 110, 63-74.
  • Scaparra, P. M., & Scutella, M. G. (2001). Facilities, Locations, Customers: Building Blocks of Location Models. A Survey, (Technical Report TR-01-18). Pisa, Italy: Universits' degli Studi di Pisa.
  • Somer, T. G., (1979). Fabrika kuruluşunda yer seçimi (Rapor No: 14). Ankara: Makina Mühendisleri Odası.
  • Stevenson, W. J. & Hojati, M. (2007). Operations management. Boston: McGraw-Hill Irwin.
  • Takan, M. A. V., & Kandemir, S. Y. (2021). Türkiye’deki Jeotermal Enerjinin Birincil Enerji Arzı Yönünden Değerlendirilmesi. Avrupa Bilim ve Teknoloji Dergisi, 7(2), 381-385.
  • UN. (2023, Mart 5). Global Sustainable Development Report 2019: Future Is Now - Science for Achieving Sustainable Development. United Nations (UN). Retrieved from https://sustainabledevelopment.un.org/content/documents/ 24797GSDR_report_2019.pdf.
  • Valenti, F., Parlato, M. C., Pecorino, B., & Selvaggi, R. (2023). Enhancement of sustainable bioenergy production by valorising tomato residues: A GIS-based model. Science of The Total Environment, 869, 161766. doi: 10.1016/j.biombioe.2015.10.015.
  • Wang, Z., Duan, Y., & Huo, J. (2021). Maximal covering location problem of smart recycling infrastructure for recyclable waste in an uncertain environment. Waste Management & Research, 39(2), 396-404.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Hakan Oktay Aydınlı 0000-0001-9596-0079

Hakan Uyguçgil 0000-0003-3100-0129

Erken Görünüm Tarihi 26 Eylül 2023
Yayımlanma Tarihi 28 Eylül 2023
Gönderilme Tarihi 16 Aralık 2022
Kabul Tarihi 10 Temmuz 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Aydınlı, H. O., & Uyguçgil, H. (2023). CBS Ağ Analizi Yöntemleri ile Hayvansal Gübre Kaynaklı Biyogaz Üretim Tesisi Yer Seçimi: Eskişehir Örneği. Türk Uzaktan Algılama Ve CBS Dergisi, 4(2), 187-197. https://doi.org/10.48123/rsgis.1220098

Creative Commons License
Turkish Journal of Remote Sensing and GIS (Türk Uzaktan Algılama ve CBS Dergisi), Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.