Öz
Forest fires are a common natural disaster in the world. Remote sensing technologies are frequently used in the extraction of the burned areas after forest fires. In this study, the forest fire that occurred in Karabağlar district of İzmir province on August 18, 2019, and which lasted for 53 hours was examined. Remote sensing techniques have been applied to multispectral images (MSI) and Synthetic Aperture Radar (SAR) datasets (Landsat 8, Sentinel 2, and Sentinel 1A) from the dates of pre-fire and post-fire periods of each dataset. Additionally, the fire risk model was calculated. Burned areas were extracted by using two indices of vegetation which are NDVI and NBR. The unsupervised classification was applied on the dNBR (Difference Normalized Combustion Index) and dNDVI (Difference Normalized Plant Index) indices images. Accuracy analyzes were made by calculating the areas of the classified images and compared with the Ecology Union data. The burned area was calculated with 99.96% and 99.95% accuracy, respectively. Sentinel 1 SAR images with Google Earth Engine platform; It is masked according to the classified areas on the dNDVI and dNBR indices of the Sentinel 2 satellite. The scattering values obtained from the masked areas were calculated statistically and the results obtained were discussed.