Derleme
BibTex RIS Kaynak Göster

Plastic Additives and Their Effects on Aquatic Environment

Yıl 2022, , 40 - 49, 30.06.2022
https://doi.org/10.53501/rteufemud.1123226

Öz

A large number of additives with different formulas are used to improve the properties, performance and durability of the plastics during their prodcution. Each plays a role in improving the functional property of a plastic material. It is known that plastics from industrial activities, domestic and industrial wastewater reach rivers and eventually ends up in the ocean. For this reason, it is inevitable for plastics and additives to contaminate the aquatic ecosystem. Due to resistant of plastic additives to physical, chemical and biological degradation, they can bioaccumulate and enter the food web with potentially toxicity. Considering the increase in plastic production, research on the lethal and sublethal toxicity of plastic additives in fish, invertebrates and other aquatic organisms have been conducted. However, more research is needed on the absorption, distribution and localization of plastic additives in aquatic organisms, as well as their effects on DNA, protein levels, gene expression changes, metabolism and tissues.

Kaynakça

  • Avio, C.G., Gorbi, S., Regoli, F. (2017). Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Marine Environmental Research, 128, 2-11, https://doi.org/10.1016/j.marenvres.2016.05.012
  • Baini, M., Martellini, T., Cincinelli, A., Campani, T., Minutoli, R., Panti, C., Finoia, M.G., Fossi, M.C. (2016). Analytical methods First detection of seven phthalate esters (PAEs) as plastic tracers in superficial neustonic / planktonic samples and cetacean blubber. Analytical Methods, 9(9), 1512-1520. Barboza, L.G.A., Cunha, S.C., Monteiro, C., Fernandes, J.O., Guilhermino, L. (2020). Bisphenol A and its analogs in muscle and liver of fish from the NorthEast Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. Journal of hazardous materials, 393, 122419. https://doi.org/10.1016/j.jhazmat.2020.122419
  • Boran, H., Terzi, S. (2017). Stress-induced transcriptional changes and dna damage associated with bis (2-ethylhexyl) adipate exposure in zebrafish (Danio rerio) larvae. Bulletin of Environmental Contamination and Toxicology, 99, 308-314.
  • Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y.-L., Wu, Y., Widelka, M. (2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity—a review. Environmental Science & Technology, 50(11), 5438-5453. https://doi.org/10.1021/acs.est.5b05387
  • Chen, Q., Allgeier, A., Yin, D., Hollert, H. (2019). Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environment International, 130, 104938. https://doi.org/10.1016/j.envint.2019.104938
  • Crain, D.A., Eriksen, M., Iguchi, T., Jobling, S., Laufer, H., LeBlanc, G.A., Guillette, L.J. Jr. (2007). An ecological assessment of bisphenol-A: evidence from comparative biology. Reproductive Toxicology, 24(2), 225-239. https://doi.org/10.1016/j.reprotox.2007.05.008
  • Derakhshesh, N., Movahedinia, A.A., Salamat, N., Hashemitabar, M., Bayati, V. (2017). Using a liver cell culture from Epinephelus coioides as a model to evaluate the nonylphenol-induced oxidative stress. Marine Pollution Bulletin, 122(1-2), 243-252. https://doi.org/10.1016/j.marpolbul.2017.06.049
  • Derraik, J.G.B. (2002). The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44(9), 842-852. https://doi.org/10.1016/S0025-326X(02)00220-5
  • Engler, R.E. (2012). The complex interaction between marine debris and toxic chemicals in the ocean. Environmental Science & Technology, 46(22), 12302-12315. https://doi.org/10.1021/es3027105
  • European Council Regulation European Commission, (2011). Regulation No.10/2011 on Plastic materials and articles intended to come into contact with food. Available on: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R0010 (Accessed on 14 September 2021)
  • European Food Safety Authority, (2012). Scientific opinion on emerging and novel brominated flame retardants (BFRs) in food. EFSA Journal, 10(10), 2908. https://doi.org/10.2903/j.efsa.2012.2908
  • Geyer, R., Jambeck, J.R., Law., K.L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
  • Guzzetti, E., Sureda, A., Tejada, S., Faggio, C. (2018). Microplastic in marine organism: environmental and toxicological effects. Environmental Toxicology and Pharmacology, 64, 164-171. https://doi.org/10.1016/j.etap.2018.10.009
  • Hahladakis, J.N., Velis, C.A., Weber, R., Lacovidou, E., Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179-199. https://doi.org/10.1016/j.jhazmat.2017.10.014
  • Hansen, E., Nilsson, N.H., Lithner, D., Lassen, C. (2013). Hazardous substances in plastic materials. COWI in cooperation with Danish Technological Institute, 7-8.
  • Hermabessiere, L., Dehaut, A., Paul-Pont I., Lacroix, C., Jezequel, R., Soudant, P., Duflos, G. (2017). Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere, 182, 781-793. https://doi.org/10.1016/j.chemosphere.2017.05.096
  • Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology, 46, 3060–3075. https://doi.org/10.1021/es2031505
  • ICIS, (2003). Product Profile: Bisphenol A. Available on:http://www.icis.com/resources/news/2003/04/24/193606/product-profile-bisphenol-a/ (Accessed on 16 May 2022)
  • Jang, M., Shim, W.J., Han, G.M., Rani, M., Song, Y.K., Hong, S.H. (2016). Styrofoam debris as a source of hazardous additives for marine organisms. Environmental Science & Technology, 50(10), 4951-4960. https://doi.org/10.1021/acs.est.5b05485
  • Jeong, J., Choi, J. (2019). Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere, 231, 249-255. https://doi.org/10.1016/j.chemosphere.2019.05.003
  • Kershaw, P.J., Rochman, C.M. (2015). Sources, fate and effects of microplastics in the marine environment: part 2 of a global assessment. Reports and Studies-IMO/FAO/Unesco-IOC/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) 93.
  • Khaled, A., Rivaton, A., Richard, C., Jaber, F., Sleiman, M. (2018). Phototransformation of plastic containing brominated flame retardants: enhanced fragmentation and release of photoproducts to water and air. Environmental Science & Technology, 52(19), 11123-11131. https://doi.org/10.1021/acs.est.8b03172
  • Kolomijeca, A., Parrott, J., Khan, H., Shires, K., Clarence, S., Sullivan, C., Chibwe, L., Sinton, D., Rochman, C.M. (2020). Increased temperature and turbulence alter the effects of leachates from tire particles on fathead minnow (Pimephales promelas). Environmental Science & Technology, 54(3), 1750-1759. https://doi.org/10.1021/acs.est.9b05994
  • Laing, L.V., Viana, J., Dempster, E.L., Trznadel, M., Trunkfield, L.A., Uren Webster, T.M., van Aerle, R., Paull, G.C., Wilson, R.J., Mill, J., Santos, E.M. (2016). Bisphenol A causes reproductive toxicity, decreases dnmt1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio) Epigenetics, 11, 526-538. https://doi.org/10.1080/15592294.2016.1182272
  • Lau, O.W., Wong, S.K. (2000). Contamination in food from packaging material. Journal of Chromatography A, 882, 1-2. https://doi.org/10.1016/S0021-9673(00)00356-3
  • Luo., H., Xiang, Y., He, D., Li, Y., Zhao, Y., Wang, S., Pan, X. (2019). Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. Science of the Total Environment, 678, 1-9. https://doi.org/10.1016/j.scitotenv.2019.04.401
  • Loughlin, S. (2018) Final project report. Government Office for Science, London. 1-32.
  • Loyo-Rosales, J.E., Rosales-Rivera, G.C., Lynch, A.M., Rice, C.P., Torrents, A. (2004). Migration of nonylphenol from plastic containers to water and a milk surrogate. Journal of Agricultural and Food Chemistry, 52(7), 2016-2020. https://doi.org/10.1021/jf0345696
  • Meeker, J.D., Sathyanarayana, S., Swan, S.H. (2009). Phthalates and other additives in plastics: human exposure and associated health outcomes., Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2097-2113. https://doi.org/10.1098/rstb.2008.0268
  • Molino, C., Filippi, S., Stoppiello, G.A., Meschini, R., Angeletti, D. (2019). In vitro evaluation of cytotoxic and genotoxic effects of di(2-ethylhexyl)-phthalate (DEHP) on European sea bass (Dicentrarchus labrax) embryonic cell line. Toxicology in Vitro, 56, 118-125. https://doi.org/10.1016/j.tiv.2019.01.017
  • Morris, S., Allchin, C.R., Zegers, B.N., Haftka, J.J.H., Boon, J.P., Belpaire, C., Leonards P.E.G., van Leeuwen, S.P.J., de Boer, J. (2004). Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea Estuaries and aquatic food webs. Environmental Science & Technology, 38(21), 5497-5504. https://doi.org/10.1021/es049640i
  • Net, S., Sempéré, R., Delmont, A., Paluselli, A., Ouddane, B. (2015a). Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environmental Science & Technology, 49(7), 4019-4035. https://doi.org/10.1021/es505233b
  • Net, S., Sempéré, R., Delmont, A., Paluselli, A., Ouddane, B. (2015b). Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environmental Science & Technology, 49(7), 4019-4035. https://doi.org/10.1021/es505233b
  • Oehlmann, J., Schulte-Oehlmann, U., Kloas, W., Jagnytsch, O., Lutz, I., Kusk, K.O., Wollenberger, L., Santos, E.M., Paull, G.C., Van Look, K.J.W., Tyler, C.R. (2009). A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2047-2062. https://doi.org/10.1098/rstb.2008.0242
  • OSPAR Commission (2007). OSPAR Pilot Project on Monitoring Marine Beach Litter. Monitoring of marine litter in the OSPAR region. OSPAR Publication, 386.
  • Paluselli, A., Fauvelle, V., Galgani, F., Sempéré, R. (2019). Phthalate release from plastic fragments and degradation in seawater. Environmental Science & Technology, 53(1), 166-175. https://doi.org/10.1021/acs.est.8b05083
  • Pérez-Albaladejo, E., Lacorte, S., Porte, C. (2018). Differential toxicity of alkylphenols in JEG-3 human placental cells: alteration of P450 aromatase and cell lipid composition. Toxicological Sciences, 167(2), 336-346. https://doi.org/10.1093/toxsci/kfy243
  • Prata, J.C., da Costa, J.P., Lopes, I., Duarte, A.C., Rocha-Santos, T. (2019). Effects of microplastics on microalgae populations: a critical review. Science of The Total Environment, 665, 400-405.https://doi.org/10.1016/j.scitotenv.2019.02.132
  • Prokic, M.D., Radovanovic, T.B., Gavric, J.P., Faggio, C. (2019). Ecotoxicological effects of microplastics: examination of biomarkers, current state and future perspectives. TrAC Trends in Analytical Chemistry, 111, 37-46. https://doi.org/10.1016/j.trac.2018.12.001
  • Qiu, W., Chen, J., Li, Y., Chen, Z., Jiang, L., Yang, M., Wu, M. (2016). Oxidative stress and immune disturbance after long-term exposure to bisphenol A in juvenile common carp. Ecotoxicology and Environmental Safety, 130, 93-102. https://doi.org/10.1016/j.ecoenv.2016.04.014
  • Qiu, W., Zhan, H., Tian, Y., Zhang, T., He, X., Luo, S., Xu, H., Zheng, C. (2018). The in vivo action of chronic bisphenol F showing potential immune disturbance in juvenile common carp (Cyprinus carpio). Chemosphere, 205, 506-513. https://doi.org/10.1016/j.chemosphere.2018.04.105
  • Rani, M., Shim, W.J., Han, G.M., Jang, M., Al-Odaini, N.A., Song, Y.K., Hong, S.H. (2015). Qualitative analysis of additives in plastic marine debris and its new products. Archives of Environmental Contamination and Toxicology, 69(3), 352-366.
  • Ryan, P.G., Moore, C. J., van Franeker, J.A., Moloney, C. L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1999-2012. https://doi.org/10.1098/rstb.2008.0207
  • Sajiki, J., Yonekubo, J. (2003). Leaching of bisphenol A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere, 51, 55-62. https://doi.org/10.1016/S0045-6535(02)00789-0
  • Sayed, A.E.D.H., Ismail, R.F.K. (2017). Endocrine disruption, oxidative stress, and testicular damage induced by 4-nonylphenol in Clarias gariepinus: The protective role of Cydonia oblonga. Fish Physiology and Biochemistry, 43(4), 1095-1104. https://doi.org/10.1007/s10695-017-0355-2
  • Schmidt, N., Castro-jiménez, J., Fauvelle, V., Ourgaud, M., Sempere, R. (2020). Occurrence of organic plastic additives in surface waters of the Rhône River (France). Environmental Pollution, 257, 113637, https://doi.org/10.1016/j.envpol.2019.113637
  • Shaliutina, O., Shaliutina-Kolešová, A., Lebeda, I., Rodina, M., Gazo I. (2017). The in vitro effect of nonylphenol, propranolol, and diethylstilbestrol on quality parameters and oxidative stress in sterlet (Acipenser ruthenus) spermatozoa. Toxicology in Vitro, 43, 9-15. https://doi.org/10.1016/j.tiv.2017.05.006
  • Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., Lester, J.N. (2008). Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34(7), 1033-1049. https://doi.org/10.1016/j.envint.2008.01.004
  • Suhrhoff, T.J., Scholz-Böttcher, B.M. (2016). Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics—a lab experiment. Marine Pollution Bulletin, 102(1), 84-94. https://doi.org/10.1016/j.marpolbul.2015.11.054
  • Talsness, C.E., Andrade, A.J.M., Kuriyama, S.N., Taylor, J.A., vom Saal, F.S. (2009). Components of plastic: experimental studies in animals and relevance for human health. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2079-2096. https://doi.org/10.1098/rstb.2008.0281
  • Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., Russell, A.E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838-838. https://doi.org/10.1126/science.1094559
  • US Environmental Protection Agency, (2010). Nonylphenol (NP) and Nonylphenol Ethoxylates (NPEs) Action Plan. Available on: https://www.epa.gov/sites/production/files/2015-09/documents/rin2070-za09_np-npes_action_plan_final_2010-08-09.pdf (Accessed on 04 May 2022)
  • URL-1, (2019). https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the facts.pdf. 30 Mayıs 2022.
  • Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries. E., Grosbois C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A.D., Winther-Nielsen, M., Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 26(1), 1-9.
  • Vandermeersch, G., Lourenço, H.M., Alvarez-Muñoz, D., Cunha, S., Diogène, J., Cano-Sancho, G., Sloth, J.J., Kwadijk, C., Barcelo, D., Allegaert, W., Bekaert, K., Fernandes, J.O., Marques, A., Robbens, J. (2015). Environmental contaminants of emerging concern in seafood – European database on contaminant levels. Environmental Research, 143, 29-45. https://doi.org/10.1016/j.envres.2015.06.01

Plastik Katkı Maddeleri ve Sucul Ortama Etkileri

Yıl 2022, , 40 - 49, 30.06.2022
https://doi.org/10.53501/rteufemud.1123226

Öz

Plastik bileşiğin işleme özelliklerini, performansını ve dayanıklılığını iyileştirmek için farklı formüllere sahip çok sayıda katkı maddesi kullanılmaktadır. Her biri bir plastik malzemenin işlevsel özelliğinin geliştirilmesinde rol almaktadır. Sanayi faaliyetlerinden kaynaklanan atıkların, evsel ve endüstriyel atık suların nehirlere ve nihayetinde denizlere ulaştığı bilinmektedir. Bu nedenle plastik ve katkı maddelerinin de sucul ekosisteme karışması kaçınılmazdır. Katkı maddeleri bulundukları ortama geçebilmeleri ve fiziksel, kimyasal, biyolojik bozunmaya karşı dayanıklı olmaları sebebiyle canlı vücudunda birikebilmekte ve besin ağına girerek toksik etkiler oluşturabilmektedirler. Hızla artan plastik üretimi göz önüne alınarak plastik katkı maddelerinin letal ve subletal toksisite deneyleri; balıklar, omurgasızlar ve diğer sucul organizmalarda uygulanmaya başlanmıştır. Ancak plastik katkı maddelerinin sucul organizmalardaki absorbsiyonu, dağılımı, yerleşimi, bunun yanında DNA, protein seviyeleri, gen ekspresyon değişimleri, metabolizma ve dokular üzerine etkileri hakkında daha fazla araştırmaya ihtiyaç duyulmaktadır.

Kaynakça

  • Avio, C.G., Gorbi, S., Regoli, F. (2017). Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Marine Environmental Research, 128, 2-11, https://doi.org/10.1016/j.marenvres.2016.05.012
  • Baini, M., Martellini, T., Cincinelli, A., Campani, T., Minutoli, R., Panti, C., Finoia, M.G., Fossi, M.C. (2016). Analytical methods First detection of seven phthalate esters (PAEs) as plastic tracers in superficial neustonic / planktonic samples and cetacean blubber. Analytical Methods, 9(9), 1512-1520. Barboza, L.G.A., Cunha, S.C., Monteiro, C., Fernandes, J.O., Guilhermino, L. (2020). Bisphenol A and its analogs in muscle and liver of fish from the NorthEast Atlantic Ocean in relation to microplastic contamination. Exposure and risk to human consumers. Journal of hazardous materials, 393, 122419. https://doi.org/10.1016/j.jhazmat.2020.122419
  • Boran, H., Terzi, S. (2017). Stress-induced transcriptional changes and dna damage associated with bis (2-ethylhexyl) adipate exposure in zebrafish (Danio rerio) larvae. Bulletin of Environmental Contamination and Toxicology, 99, 308-314.
  • Chen, D., Kannan, K., Tan, H., Zheng, Z., Feng, Y.-L., Wu, Y., Widelka, M. (2016). Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity—a review. Environmental Science & Technology, 50(11), 5438-5453. https://doi.org/10.1021/acs.est.5b05387
  • Chen, Q., Allgeier, A., Yin, D., Hollert, H. (2019). Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environment International, 130, 104938. https://doi.org/10.1016/j.envint.2019.104938
  • Crain, D.A., Eriksen, M., Iguchi, T., Jobling, S., Laufer, H., LeBlanc, G.A., Guillette, L.J. Jr. (2007). An ecological assessment of bisphenol-A: evidence from comparative biology. Reproductive Toxicology, 24(2), 225-239. https://doi.org/10.1016/j.reprotox.2007.05.008
  • Derakhshesh, N., Movahedinia, A.A., Salamat, N., Hashemitabar, M., Bayati, V. (2017). Using a liver cell culture from Epinephelus coioides as a model to evaluate the nonylphenol-induced oxidative stress. Marine Pollution Bulletin, 122(1-2), 243-252. https://doi.org/10.1016/j.marpolbul.2017.06.049
  • Derraik, J.G.B. (2002). The pollution of the marine environment by plastic debris: a review. Marine Pollution Bulletin, 44(9), 842-852. https://doi.org/10.1016/S0025-326X(02)00220-5
  • Engler, R.E. (2012). The complex interaction between marine debris and toxic chemicals in the ocean. Environmental Science & Technology, 46(22), 12302-12315. https://doi.org/10.1021/es3027105
  • European Council Regulation European Commission, (2011). Regulation No.10/2011 on Plastic materials and articles intended to come into contact with food. Available on: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32011R0010 (Accessed on 14 September 2021)
  • European Food Safety Authority, (2012). Scientific opinion on emerging and novel brominated flame retardants (BFRs) in food. EFSA Journal, 10(10), 2908. https://doi.org/10.2903/j.efsa.2012.2908
  • Geyer, R., Jambeck, J.R., Law., K.L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782
  • Guzzetti, E., Sureda, A., Tejada, S., Faggio, C. (2018). Microplastic in marine organism: environmental and toxicological effects. Environmental Toxicology and Pharmacology, 64, 164-171. https://doi.org/10.1016/j.etap.2018.10.009
  • Hahladakis, J.N., Velis, C.A., Weber, R., Lacovidou, E., Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. Journal of Hazardous Materials, 344, 179-199. https://doi.org/10.1016/j.jhazmat.2017.10.014
  • Hansen, E., Nilsson, N.H., Lithner, D., Lassen, C. (2013). Hazardous substances in plastic materials. COWI in cooperation with Danish Technological Institute, 7-8.
  • Hermabessiere, L., Dehaut, A., Paul-Pont I., Lacroix, C., Jezequel, R., Soudant, P., Duflos, G. (2017). Occurrence and effects of plastic additives on marine environments and organisms: A review. Chemosphere, 182, 781-793. https://doi.org/10.1016/j.chemosphere.2017.05.096
  • Hidalgo-Ruz, V., Gutow, L., Thompson, R.C., Thiel, M. (2012). Microplastics in the marine environment: A review of the methods used for identification and quantification. Environmental Science and Technology, 46, 3060–3075. https://doi.org/10.1021/es2031505
  • ICIS, (2003). Product Profile: Bisphenol A. Available on:http://www.icis.com/resources/news/2003/04/24/193606/product-profile-bisphenol-a/ (Accessed on 16 May 2022)
  • Jang, M., Shim, W.J., Han, G.M., Rani, M., Song, Y.K., Hong, S.H. (2016). Styrofoam debris as a source of hazardous additives for marine organisms. Environmental Science & Technology, 50(10), 4951-4960. https://doi.org/10.1021/acs.est.5b05485
  • Jeong, J., Choi, J. (2019). Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere, 231, 249-255. https://doi.org/10.1016/j.chemosphere.2019.05.003
  • Kershaw, P.J., Rochman, C.M. (2015). Sources, fate and effects of microplastics in the marine environment: part 2 of a global assessment. Reports and Studies-IMO/FAO/Unesco-IOC/WMO/IAEA/UN/UNEP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP) 93.
  • Khaled, A., Rivaton, A., Richard, C., Jaber, F., Sleiman, M. (2018). Phototransformation of plastic containing brominated flame retardants: enhanced fragmentation and release of photoproducts to water and air. Environmental Science & Technology, 52(19), 11123-11131. https://doi.org/10.1021/acs.est.8b03172
  • Kolomijeca, A., Parrott, J., Khan, H., Shires, K., Clarence, S., Sullivan, C., Chibwe, L., Sinton, D., Rochman, C.M. (2020). Increased temperature and turbulence alter the effects of leachates from tire particles on fathead minnow (Pimephales promelas). Environmental Science & Technology, 54(3), 1750-1759. https://doi.org/10.1021/acs.est.9b05994
  • Laing, L.V., Viana, J., Dempster, E.L., Trznadel, M., Trunkfield, L.A., Uren Webster, T.M., van Aerle, R., Paull, G.C., Wilson, R.J., Mill, J., Santos, E.M. (2016). Bisphenol A causes reproductive toxicity, decreases dnmt1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio) Epigenetics, 11, 526-538. https://doi.org/10.1080/15592294.2016.1182272
  • Lau, O.W., Wong, S.K. (2000). Contamination in food from packaging material. Journal of Chromatography A, 882, 1-2. https://doi.org/10.1016/S0021-9673(00)00356-3
  • Luo., H., Xiang, Y., He, D., Li, Y., Zhao, Y., Wang, S., Pan, X. (2019). Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris. Science of the Total Environment, 678, 1-9. https://doi.org/10.1016/j.scitotenv.2019.04.401
  • Loughlin, S. (2018) Final project report. Government Office for Science, London. 1-32.
  • Loyo-Rosales, J.E., Rosales-Rivera, G.C., Lynch, A.M., Rice, C.P., Torrents, A. (2004). Migration of nonylphenol from plastic containers to water and a milk surrogate. Journal of Agricultural and Food Chemistry, 52(7), 2016-2020. https://doi.org/10.1021/jf0345696
  • Meeker, J.D., Sathyanarayana, S., Swan, S.H. (2009). Phthalates and other additives in plastics: human exposure and associated health outcomes., Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2097-2113. https://doi.org/10.1098/rstb.2008.0268
  • Molino, C., Filippi, S., Stoppiello, G.A., Meschini, R., Angeletti, D. (2019). In vitro evaluation of cytotoxic and genotoxic effects of di(2-ethylhexyl)-phthalate (DEHP) on European sea bass (Dicentrarchus labrax) embryonic cell line. Toxicology in Vitro, 56, 118-125. https://doi.org/10.1016/j.tiv.2019.01.017
  • Morris, S., Allchin, C.R., Zegers, B.N., Haftka, J.J.H., Boon, J.P., Belpaire, C., Leonards P.E.G., van Leeuwen, S.P.J., de Boer, J. (2004). Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea Estuaries and aquatic food webs. Environmental Science & Technology, 38(21), 5497-5504. https://doi.org/10.1021/es049640i
  • Net, S., Sempéré, R., Delmont, A., Paluselli, A., Ouddane, B. (2015a). Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environmental Science & Technology, 49(7), 4019-4035. https://doi.org/10.1021/es505233b
  • Net, S., Sempéré, R., Delmont, A., Paluselli, A., Ouddane, B. (2015b). Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environmental Science & Technology, 49(7), 4019-4035. https://doi.org/10.1021/es505233b
  • Oehlmann, J., Schulte-Oehlmann, U., Kloas, W., Jagnytsch, O., Lutz, I., Kusk, K.O., Wollenberger, L., Santos, E.M., Paull, G.C., Van Look, K.J.W., Tyler, C.R. (2009). A critical analysis of the biological impacts of plasticizers on wildlife. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2047-2062. https://doi.org/10.1098/rstb.2008.0242
  • OSPAR Commission (2007). OSPAR Pilot Project on Monitoring Marine Beach Litter. Monitoring of marine litter in the OSPAR region. OSPAR Publication, 386.
  • Paluselli, A., Fauvelle, V., Galgani, F., Sempéré, R. (2019). Phthalate release from plastic fragments and degradation in seawater. Environmental Science & Technology, 53(1), 166-175. https://doi.org/10.1021/acs.est.8b05083
  • Pérez-Albaladejo, E., Lacorte, S., Porte, C. (2018). Differential toxicity of alkylphenols in JEG-3 human placental cells: alteration of P450 aromatase and cell lipid composition. Toxicological Sciences, 167(2), 336-346. https://doi.org/10.1093/toxsci/kfy243
  • Prata, J.C., da Costa, J.P., Lopes, I., Duarte, A.C., Rocha-Santos, T. (2019). Effects of microplastics on microalgae populations: a critical review. Science of The Total Environment, 665, 400-405.https://doi.org/10.1016/j.scitotenv.2019.02.132
  • Prokic, M.D., Radovanovic, T.B., Gavric, J.P., Faggio, C. (2019). Ecotoxicological effects of microplastics: examination of biomarkers, current state and future perspectives. TrAC Trends in Analytical Chemistry, 111, 37-46. https://doi.org/10.1016/j.trac.2018.12.001
  • Qiu, W., Chen, J., Li, Y., Chen, Z., Jiang, L., Yang, M., Wu, M. (2016). Oxidative stress and immune disturbance after long-term exposure to bisphenol A in juvenile common carp. Ecotoxicology and Environmental Safety, 130, 93-102. https://doi.org/10.1016/j.ecoenv.2016.04.014
  • Qiu, W., Zhan, H., Tian, Y., Zhang, T., He, X., Luo, S., Xu, H., Zheng, C. (2018). The in vivo action of chronic bisphenol F showing potential immune disturbance in juvenile common carp (Cyprinus carpio). Chemosphere, 205, 506-513. https://doi.org/10.1016/j.chemosphere.2018.04.105
  • Rani, M., Shim, W.J., Han, G.M., Jang, M., Al-Odaini, N.A., Song, Y.K., Hong, S.H. (2015). Qualitative analysis of additives in plastic marine debris and its new products. Archives of Environmental Contamination and Toxicology, 69(3), 352-366.
  • Ryan, P.G., Moore, C. J., van Franeker, J.A., Moloney, C. L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1999-2012. https://doi.org/10.1098/rstb.2008.0207
  • Sajiki, J., Yonekubo, J. (2003). Leaching of bisphenol A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere, 51, 55-62. https://doi.org/10.1016/S0045-6535(02)00789-0
  • Sayed, A.E.D.H., Ismail, R.F.K. (2017). Endocrine disruption, oxidative stress, and testicular damage induced by 4-nonylphenol in Clarias gariepinus: The protective role of Cydonia oblonga. Fish Physiology and Biochemistry, 43(4), 1095-1104. https://doi.org/10.1007/s10695-017-0355-2
  • Schmidt, N., Castro-jiménez, J., Fauvelle, V., Ourgaud, M., Sempere, R. (2020). Occurrence of organic plastic additives in surface waters of the Rhône River (France). Environmental Pollution, 257, 113637, https://doi.org/10.1016/j.envpol.2019.113637
  • Shaliutina, O., Shaliutina-Kolešová, A., Lebeda, I., Rodina, M., Gazo I. (2017). The in vitro effect of nonylphenol, propranolol, and diethylstilbestrol on quality parameters and oxidative stress in sterlet (Acipenser ruthenus) spermatozoa. Toxicology in Vitro, 43, 9-15. https://doi.org/10.1016/j.tiv.2017.05.006
  • Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., Lester, J.N. (2008). Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34(7), 1033-1049. https://doi.org/10.1016/j.envint.2008.01.004
  • Suhrhoff, T.J., Scholz-Böttcher, B.M. (2016). Qualitative impact of salinity, UV radiation and turbulence on leaching of organic plastic additives from four common plastics—a lab experiment. Marine Pollution Bulletin, 102(1), 84-94. https://doi.org/10.1016/j.marpolbul.2015.11.054
  • Talsness, C.E., Andrade, A.J.M., Kuriyama, S.N., Taylor, J.A., vom Saal, F.S. (2009). Components of plastic: experimental studies in animals and relevance for human health. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 2079-2096. https://doi.org/10.1098/rstb.2008.0281
  • Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., Russell, A.E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838-838. https://doi.org/10.1126/science.1094559
  • US Environmental Protection Agency, (2010). Nonylphenol (NP) and Nonylphenol Ethoxylates (NPEs) Action Plan. Available on: https://www.epa.gov/sites/production/files/2015-09/documents/rin2070-za09_np-npes_action_plan_final_2010-08-09.pdf (Accessed on 04 May 2022)
  • URL-1, (2019). https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the facts.pdf. 30 Mayıs 2022.
  • Wagner, M., Scherer, C., Alvarez-Muñoz, D., Brennholt, N., Bourrain, X., Buchinger, S., Fries. E., Grosbois C., Klasmeier, J., Marti, T., Rodriguez-Mozaz, S., Urbatzka, R., Vethaak, A.D., Winther-Nielsen, M., Reifferscheid, G. (2014). Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 26(1), 1-9.
  • Vandermeersch, G., Lourenço, H.M., Alvarez-Muñoz, D., Cunha, S., Diogène, J., Cano-Sancho, G., Sloth, J.J., Kwadijk, C., Barcelo, D., Allegaert, W., Bekaert, K., Fernandes, J.O., Marques, A., Robbens, J. (2015). Environmental contaminants of emerging concern in seafood – European database on contaminant levels. Environmental Research, 143, 29-45. https://doi.org/10.1016/j.envres.2015.06.01
Toplam 55 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Derleme
Yazarlar

Serap Paslı 0000-0002-5066-5241

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Paslı, S. (2022). Plastik Katkı Maddeleri ve Sucul Ortama Etkileri. Recep Tayyip Erdogan University Journal of Science and Engineering, 3(1), 40-49. https://doi.org/10.53501/rteufemud.1123226

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025