New approaches in solar chimney power plants: Recent applications of hybrid power production
Yıl 2022,
Cilt: 3 Sayı: 2, 125 - 135, 30.12.2022
Harun Şen
,
Pinar Mert Cuce
,
Erdem Cüce
Öz
Güneş enerjisinin önemi fosil yakıtların son yıllarda yoğun kullanımı ile artan çevre kirliliği göz önüne alındığında insanlık için her geçen gün artmaktadır. Güneş enerjisinin önemi artarken mevcut güneş enerji sistemlerinin geliştirilmesi ve etkin kullanımı da önemlidir. Güneş enerjisini doğrudan ve dolaylı olarak kullanıldığı birçok sistem mevcuttur. Güneş bacası güç santralleri (SCPP) güneş enerjisini yapısındaki havaya aktararak dolaylı olarak güneşten elektrik üreten sistemlerdir. Kurulumundan sonra düşük bakım maliyetlerinin olması ve çevre dostu çalışma prensipleri ile gelecek vadetmektedir. Bu çalışma ilk olarak sistemin çalışma prensibini okuyuculara açıkladıktan sonra sistemin performansını etkileyen parametreleri değerlendirir. Daha sonra sistem ile ilgili son yıllarda yapılan yenilikçi çalışmalara değinir. Hibrit sistem olarak SCPP sistemlerine PV modül ilavesi, jeotermal ve dış ısı kaynağı ilavesi, deniz suyu tuzdan arındırma ve temiz su eldesi gibi çalışmalara yer verilir.
Kaynakça
- Ahirwar, M. J., Sharma, P. (2019). Analyzing the Effect of Solar Chimney Power Plant by Varying Chimney Height, Collector Slope, and Chimney Diverging Angle. International Journal of Innovative Research in Technology, 6(7), 213-219.
DOI:
- Al Alawin, A., Badran, O., Awad, A., Abdelhadi, Y., Al-Mofleh, A. (2012). Feasibility study of a solar chimney power plant in Jordan. Applied Solar Energy, 48 (4), 260-265.
DOI: 10.3103/S0003701X12040020
- Alexopoulos, S., Hoffschmidt, B. (2017). Advances in solar tower technology. Wiley Interdisciplinary Reviews: Energy and Environment, 6 (1), e217.
DOI: 10.1002/wene.217
- Aliaga, D. M., Feick, R., Brooks, W. K., Mery, M., Gers, R., Levi, J. F., Romero, C. P. (2021). Modified solar chimney configuration with a heat exchanger: Experiment and CFD simulation. Thermal Science and Engineering Progress, 22, 100850.
DOI: 10.1016/j.tsep.2021.100850
- Asayesh, M., Kasaeian, A., Ataei, A. (2017). Optimization of a combined solar chimney for desalination and power generation. Energy Conversion and Management, 150, 72-80.
DOI: 10.1016/j.enconman.2017.08.006
- Belkhode, P., Sakhale, C., Bejalwar, A. (2020). Evaluation of the experimental data to determine the performance of a solar chimney power plant. Materials Today: Proceedings, 27, 102-106.
DOI: 10.1016/j.matpr.2019.09.006
- Boutina, L., Khelifa, A., Touafek, K., Lebbi, M., Baissi, M. T. (2018). Improvement of PVT air-cooling by the integration of a chimney tower (CT/PVT). Applied Thermal Engineering, 129, 1181-1188.
DOI: 10.1016/j.applthermaleng.2017.10.097
- Cao, F., Li, H., Ma, Q., Zhao, L. (2014). Design and simulation of a geothermal–solar combined chimney power plant. Energy conversion and management, 84, 186-195.
- Cottam, P. J., Duffour, P., Lindstrand, P., Fromme, P. (2019). Solar chimney power plants–Dimension matching for optimum performance. Energy Conversion and Management, 194, 112-123.
DOI: 10.1016/j.enconman.2019.04.074
- Cuce, E., Cuce, P.M., Sen, H. (2020a). A thorough performance assessment of solar chimney power plants: Case study for Manzanares. Cleaner Engineering and Technology, 1, 100026.
DOI: 10.1016/j.clet.2020.100026
Cuce, E., Sen, H., Cuce, P.M. (2020b). Numerical performance modelling of solar chimney power plants: Influence of chimney height for a pilot plant in Manzanares, Spain. Sustainable Energy Technologies and Assessments, 39, 100704.
DOI: 10.1016/j.seta.2020.100704
- Cuce, P. M., Cuce, E., Sen, H. (2020c). Improving electricity production in solar chimney power plants with sloping ground design: an extensive CFD research. Journal of Solar Energy Research Updates, 7(1), 122-131.
DOI: http://dx.doi.org/10.31875/2410-2199.2020.07.9
- Cuce, P.M., Sen H., Cuce, E. (2021a). Impact of tower diameter on power output in solar chimney power plants. Gazi Journal of Engineering Sciences, 7 (3), 253-263.
DOI: 10.30855/gmbd.2021.03.08
- Cuce, E., Saxena, A., Cuce, P. M., Sen, H., Guo, S., Sudhakar, K. (2021b). Performance assessment of solar chimney power plants with the impacts of divergent and convergent chimney geometry. International Journal of Low-Carbon Technologies.
DOI: 10.1093/ijlct/ctaa097
- Cuce, E., Cuce, P. M., Sen, H., Sudhakar, K., Berardi, U., Serencam, U. (2021c). Impacts of Ground Slope on Main Performance Figures of Solar Chimney Power Plants: A Comprehensive CFD Research with Experimental Validation. International Journal of Photoenergy, 2021.
DOI: 10.1155/2021/6612222
- Cuce, E., Cuce, P.M., Carlucci, S., Sen, H., Sudhakar, K., Hasanuzzaman, M., Daneshazarian, R. (2022). Solar Chimney Power Plants: A Review of the Concepts, Designs and Performances. Sustainability, 14, 1450.
DOI: 10.3390/su14031450
- Eryener, D., Kuscu, H. (2018). Hybrid transpired solar collector updraft tower. Solar Energy, 159, 561-571.
DOI: 10.1016/j.solener.2017.11.035
- Fathi, N., McDaniel, P., Aleyasin, S. S., Robinson, M., Vorobieff, P., Rodriguez, S., de Oliveira, C. (2018). Efficiency enhancement of solar chimney power plant by use of waste heat from nuclear power plant. Journal of cleaner production, 180, 407-416.
DOI: 10.1016/j.jclepro.2018.01.132
- Guzel, M. H., Unal, R. E., Kose, F. (2021). Experimental study of a micro-scale sloped solar chimney power plant. Journal of Mechanical Science and Technology, 35(12), 5773-5779.
DOI: 10.1007/s12206-021-1146-3
- Haaf, W., Friedrich, K., Mayr, G., Schlaich, J. (1983). Solar chimneys part I: principle and construction of the pilot plant in Manzanares. International Journal of Solar Energy, 2(1), 3-20.
DOI: 10.1080/01425918308909911
- Haaf, W. (1984). Solar chimneys: part ii: preliminary test results from the Manzanares pilot plant. International Journal of Sustainable Energy, 2(2), 141-161.
DOI: 10.1080/01425918408909921
- Habibollahzade, A., Houshfar, E., Ashjaee, M., Behzadi, A., Gholamian, E., Mehdizadeh, H. (2018). Enhanced power generation through integrated renewable energy plants: Solar chimney and waste-to-energy. Energy conversion and management, 166, 48-63.
DOI: 10.1016/j.enconman.2018.04.010
- Habibollahzade, A., Houshfar, E., Ashjaee, M., Ekradi, K. (2021). Continuous power generation through a novel solar/geothermal chimney system: Technical/cost analyses and multi-objective particle swarm optimization. Journal of Cleaner Production, 283, 124666.
DOI: 10.1016/j.jclepro.2020.124666
- Haghighat, S., Kasaeian, A., Pourfayaz, F., Shahdost, B. M. (2019). Fluid dynamics analysis for different photovoltaic panel locations in solar chimney. Energy conversion and management, 191, 71-79.
DOI: 10.1016/j.enconman.2019.03.053
- Hassan, A., Ali, M., Waqas, A. (2018). Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle. Energy, 142, 411-425.
DOI: 10.1016/j.energy.2017.10.047
- Hussam, W. K., Salem, H. J., Redha, A. M., Khlefat, A. M., Al Khatib, F. (2022). Experimental and numerical investigation on a hybrid solar chimney-photovoltaic system for power generation in Kuwait. Energy Conversion and Management: X, 15, 100249.
DOI: 10.1016/j.ecmx.2022.100249
- Jamali, S., Yari, M., Mahmoudi, S. M. S. (2018). Enhanced power generation through cooling a semi-transparent PV power plant with a solar chimney. Energy Conversion and Management, 175, 227-235.
DOI: 10.1016/j.enconman.2018.09.004
- Liu, Q., Cao, F., Liu, Y., Zhu, T., Liu, D. (2018). Design and simulation of a solar chimney PV/T power plant in northwest China. International Journal of Photoenergy, 2018.
DOI: 10.1155/2018/1478695
- Ming, T., Gong, T., de Richter, R. K., Cai, C., Sherif, S. A. (2017). Numerical analysis of seawater desalination based on a solar chimney power plant. Applied Energy, 208, 1258-1273.
DOI: 10.1016/j.apenergy.2017.09.028
- Mullett, L.B. (1987). The solar chimney-Overall efficiency, design and performance. International journal of ambient energy, 8(1), 35-40. DOI: 10.1080/01430750.1987.9675512
- Najm, O. A., Shaaban, S. (2018). Numerical investigation and optimization of the solar chimney collector performance and power density. Energy conversion and management, 168, 150-161.
DOI: 10.1016/j.enconman.2018.04.089
- Rahbar, K., Riasi, A. (2019). Performance enhancement and optimization of solar chimney power plant integrated with transparent photovoltaic cells and desalination method. Sustainable Cities and Society, 46, 101441.
DOI: 10.1016/j.scs.2019.101441
- Semai, H., Bouhdjar, A., Larbi, S. (2017). Canopy slope effect on the performance of the solar chimney power plant. International journal of green energy, 14(3), 229-238.
DOI: 10.1080/15435075.2016.1253580
- Sen, H., Cuce, E. (2020). Dynamic pressure distributions in solar chimney power plants: A numerical research for the pilot plant in Manzanares, Spain. WSSET Newsletter, 12(1), 2-2.
- Sen, H., Cuce, P.M., Cuce, E. (2021). Impacts of Collector Radius and Height on Performance Parameters of Solar Chimney Power Plants: A Case Study for Manzanares, Spain . Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi , 2 (2) , 83-104 .
DOI: 10.53501/rteufemud.1017909
- Sheik, M.A., Aravindan, M.K., Cuce, E., Dasore, A., Rajak, U., Shaik, S., Manokar A.M., Riffat, S. (2022). A comprehensive review on recent advancements in cooling of solar photovoltaic systems using phase change materials. International Journal of Low-Carbon Technologies, 17, 768-783.
DOI: 10.1093/ijlct/ctac053
- Toghraie, D., Karami, A., Afrand, M., Karimipour, A. (2018). Effects of geometric parameters on the performance of solar chimney power plants. Energy, 162, 1052-1061.
DOI: 10.1016/j.energy.2018.08.086
- Torabi, M. R., Hosseini, M., Akbari, O. A., Afrouzi, H. H., Toghraie, D., Kashani, A., Alizadeh, A. A. (2021). Investigation the performance of solar chimney power plant for improving the efficiency and increasing the outlet power of turbines using computational fluid dynamics. Energy Reports, 7, 4555-4565.
DOI: 10.1016/j.egyr.2021.07.044
- Yapıcı, E.Ö., Ayli, E., Nsaif, O. (2020). Numerical investigation on the performance of a small scale solar chimney power plant for different geometrical parameters. Journal of Cleaner Production, 276, 122908.
DOI: 10.1016/j.jclepro.2020.122908
- Yazdi, M. H., Solomin, E., Fudholi, A., Sopian, K., Chong, P. L. (2021). Numerical analysis of the performance of a hybrid solar chimney system with an integrated external thermal source. Thermal Science and Engineering Progress, 26, 101127.
DOI: 10.1016/j.tsep.2021.101127
- Zuo, L., Zheng, Y., Li, Z., Sha, Y. (2011). Solar chimneys integrated with sea water desalination. Desalination, 276(1-3), 207-213.
DOI: 10.1016/j.desal.2011.03.052
- Zhang, Y., Sivakumar, M., Yang, S., Enever, K., Ramezanianpour, M. (2018). Application of solar energy in water treatment processes: A review. Desalination, 428, 116-145.
DOI: 10.1016/j.desal.2017.11.020
New approaches in solar chimney power plants: Recent applications of hybrid power production
Yıl 2022,
Cilt: 3 Sayı: 2, 125 - 135, 30.12.2022
Harun Şen
,
Pinar Mert Cuce
,
Erdem Cüce
Öz
The importance of solar energy is increasing day by day for humanity, considering the increasing environmental pollution with the intensive use of fossil fuels in recent years. While the importance of solar energy is increasing, the development and effective use of existing solar energy systems are also important. There are many systems in which solar energy is used directly or indirectly. Solar chimney power plants (SCPP) are systems that indirectly generate electricity from the sun by transferring solar energy to the air in its structure. It is promising with its low maintenance costs and environmentally friendly working principles after its installation. This study firstly explains the working principle of the system to the readers and then evaluates the parameters that affect the performance of the system. Then, it refers to the innovative studies carried out in recent years regarding the system. As a hybrid system, studies such as adding PV modules to SCPP systems, adding geothermal and external heat sources, desalination of seawater, and obtaining clean water are included.
Kaynakça
- Ahirwar, M. J., Sharma, P. (2019). Analyzing the Effect of Solar Chimney Power Plant by Varying Chimney Height, Collector Slope, and Chimney Diverging Angle. International Journal of Innovative Research in Technology, 6(7), 213-219.
DOI:
- Al Alawin, A., Badran, O., Awad, A., Abdelhadi, Y., Al-Mofleh, A. (2012). Feasibility study of a solar chimney power plant in Jordan. Applied Solar Energy, 48 (4), 260-265.
DOI: 10.3103/S0003701X12040020
- Alexopoulos, S., Hoffschmidt, B. (2017). Advances in solar tower technology. Wiley Interdisciplinary Reviews: Energy and Environment, 6 (1), e217.
DOI: 10.1002/wene.217
- Aliaga, D. M., Feick, R., Brooks, W. K., Mery, M., Gers, R., Levi, J. F., Romero, C. P. (2021). Modified solar chimney configuration with a heat exchanger: Experiment and CFD simulation. Thermal Science and Engineering Progress, 22, 100850.
DOI: 10.1016/j.tsep.2021.100850
- Asayesh, M., Kasaeian, A., Ataei, A. (2017). Optimization of a combined solar chimney for desalination and power generation. Energy Conversion and Management, 150, 72-80.
DOI: 10.1016/j.enconman.2017.08.006
- Belkhode, P., Sakhale, C., Bejalwar, A. (2020). Evaluation of the experimental data to determine the performance of a solar chimney power plant. Materials Today: Proceedings, 27, 102-106.
DOI: 10.1016/j.matpr.2019.09.006
- Boutina, L., Khelifa, A., Touafek, K., Lebbi, M., Baissi, M. T. (2018). Improvement of PVT air-cooling by the integration of a chimney tower (CT/PVT). Applied Thermal Engineering, 129, 1181-1188.
DOI: 10.1016/j.applthermaleng.2017.10.097
- Cao, F., Li, H., Ma, Q., Zhao, L. (2014). Design and simulation of a geothermal–solar combined chimney power plant. Energy conversion and management, 84, 186-195.
- Cottam, P. J., Duffour, P., Lindstrand, P., Fromme, P. (2019). Solar chimney power plants–Dimension matching for optimum performance. Energy Conversion and Management, 194, 112-123.
DOI: 10.1016/j.enconman.2019.04.074
- Cuce, E., Cuce, P.M., Sen, H. (2020a). A thorough performance assessment of solar chimney power plants: Case study for Manzanares. Cleaner Engineering and Technology, 1, 100026.
DOI: 10.1016/j.clet.2020.100026
Cuce, E., Sen, H., Cuce, P.M. (2020b). Numerical performance modelling of solar chimney power plants: Influence of chimney height for a pilot plant in Manzanares, Spain. Sustainable Energy Technologies and Assessments, 39, 100704.
DOI: 10.1016/j.seta.2020.100704
- Cuce, P. M., Cuce, E., Sen, H. (2020c). Improving electricity production in solar chimney power plants with sloping ground design: an extensive CFD research. Journal of Solar Energy Research Updates, 7(1), 122-131.
DOI: http://dx.doi.org/10.31875/2410-2199.2020.07.9
- Cuce, P.M., Sen H., Cuce, E. (2021a). Impact of tower diameter on power output in solar chimney power plants. Gazi Journal of Engineering Sciences, 7 (3), 253-263.
DOI: 10.30855/gmbd.2021.03.08
- Cuce, E., Saxena, A., Cuce, P. M., Sen, H., Guo, S., Sudhakar, K. (2021b). Performance assessment of solar chimney power plants with the impacts of divergent and convergent chimney geometry. International Journal of Low-Carbon Technologies.
DOI: 10.1093/ijlct/ctaa097
- Cuce, E., Cuce, P. M., Sen, H., Sudhakar, K., Berardi, U., Serencam, U. (2021c). Impacts of Ground Slope on Main Performance Figures of Solar Chimney Power Plants: A Comprehensive CFD Research with Experimental Validation. International Journal of Photoenergy, 2021.
DOI: 10.1155/2021/6612222
- Cuce, E., Cuce, P.M., Carlucci, S., Sen, H., Sudhakar, K., Hasanuzzaman, M., Daneshazarian, R. (2022). Solar Chimney Power Plants: A Review of the Concepts, Designs and Performances. Sustainability, 14, 1450.
DOI: 10.3390/su14031450
- Eryener, D., Kuscu, H. (2018). Hybrid transpired solar collector updraft tower. Solar Energy, 159, 561-571.
DOI: 10.1016/j.solener.2017.11.035
- Fathi, N., McDaniel, P., Aleyasin, S. S., Robinson, M., Vorobieff, P., Rodriguez, S., de Oliveira, C. (2018). Efficiency enhancement of solar chimney power plant by use of waste heat from nuclear power plant. Journal of cleaner production, 180, 407-416.
DOI: 10.1016/j.jclepro.2018.01.132
- Guzel, M. H., Unal, R. E., Kose, F. (2021). Experimental study of a micro-scale sloped solar chimney power plant. Journal of Mechanical Science and Technology, 35(12), 5773-5779.
DOI: 10.1007/s12206-021-1146-3
- Haaf, W., Friedrich, K., Mayr, G., Schlaich, J. (1983). Solar chimneys part I: principle and construction of the pilot plant in Manzanares. International Journal of Solar Energy, 2(1), 3-20.
DOI: 10.1080/01425918308909911
- Haaf, W. (1984). Solar chimneys: part ii: preliminary test results from the Manzanares pilot plant. International Journal of Sustainable Energy, 2(2), 141-161.
DOI: 10.1080/01425918408909921
- Habibollahzade, A., Houshfar, E., Ashjaee, M., Behzadi, A., Gholamian, E., Mehdizadeh, H. (2018). Enhanced power generation through integrated renewable energy plants: Solar chimney and waste-to-energy. Energy conversion and management, 166, 48-63.
DOI: 10.1016/j.enconman.2018.04.010
- Habibollahzade, A., Houshfar, E., Ashjaee, M., Ekradi, K. (2021). Continuous power generation through a novel solar/geothermal chimney system: Technical/cost analyses and multi-objective particle swarm optimization. Journal of Cleaner Production, 283, 124666.
DOI: 10.1016/j.jclepro.2020.124666
- Haghighat, S., Kasaeian, A., Pourfayaz, F., Shahdost, B. M. (2019). Fluid dynamics analysis for different photovoltaic panel locations in solar chimney. Energy conversion and management, 191, 71-79.
DOI: 10.1016/j.enconman.2019.03.053
- Hassan, A., Ali, M., Waqas, A. (2018). Numerical investigation on performance of solar chimney power plant by varying collector slope and chimney diverging angle. Energy, 142, 411-425.
DOI: 10.1016/j.energy.2017.10.047
- Hussam, W. K., Salem, H. J., Redha, A. M., Khlefat, A. M., Al Khatib, F. (2022). Experimental and numerical investigation on a hybrid solar chimney-photovoltaic system for power generation in Kuwait. Energy Conversion and Management: X, 15, 100249.
DOI: 10.1016/j.ecmx.2022.100249
- Jamali, S., Yari, M., Mahmoudi, S. M. S. (2018). Enhanced power generation through cooling a semi-transparent PV power plant with a solar chimney. Energy Conversion and Management, 175, 227-235.
DOI: 10.1016/j.enconman.2018.09.004
- Liu, Q., Cao, F., Liu, Y., Zhu, T., Liu, D. (2018). Design and simulation of a solar chimney PV/T power plant in northwest China. International Journal of Photoenergy, 2018.
DOI: 10.1155/2018/1478695
- Ming, T., Gong, T., de Richter, R. K., Cai, C., Sherif, S. A. (2017). Numerical analysis of seawater desalination based on a solar chimney power plant. Applied Energy, 208, 1258-1273.
DOI: 10.1016/j.apenergy.2017.09.028
- Mullett, L.B. (1987). The solar chimney-Overall efficiency, design and performance. International journal of ambient energy, 8(1), 35-40. DOI: 10.1080/01430750.1987.9675512
- Najm, O. A., Shaaban, S. (2018). Numerical investigation and optimization of the solar chimney collector performance and power density. Energy conversion and management, 168, 150-161.
DOI: 10.1016/j.enconman.2018.04.089
- Rahbar, K., Riasi, A. (2019). Performance enhancement and optimization of solar chimney power plant integrated with transparent photovoltaic cells and desalination method. Sustainable Cities and Society, 46, 101441.
DOI: 10.1016/j.scs.2019.101441
- Semai, H., Bouhdjar, A., Larbi, S. (2017). Canopy slope effect on the performance of the solar chimney power plant. International journal of green energy, 14(3), 229-238.
DOI: 10.1080/15435075.2016.1253580
- Sen, H., Cuce, E. (2020). Dynamic pressure distributions in solar chimney power plants: A numerical research for the pilot plant in Manzanares, Spain. WSSET Newsletter, 12(1), 2-2.
- Sen, H., Cuce, P.M., Cuce, E. (2021). Impacts of Collector Radius and Height on Performance Parameters of Solar Chimney Power Plants: A Case Study for Manzanares, Spain . Recep Tayyip Erdoğan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi , 2 (2) , 83-104 .
DOI: 10.53501/rteufemud.1017909
- Sheik, M.A., Aravindan, M.K., Cuce, E., Dasore, A., Rajak, U., Shaik, S., Manokar A.M., Riffat, S. (2022). A comprehensive review on recent advancements in cooling of solar photovoltaic systems using phase change materials. International Journal of Low-Carbon Technologies, 17, 768-783.
DOI: 10.1093/ijlct/ctac053
- Toghraie, D., Karami, A., Afrand, M., Karimipour, A. (2018). Effects of geometric parameters on the performance of solar chimney power plants. Energy, 162, 1052-1061.
DOI: 10.1016/j.energy.2018.08.086
- Torabi, M. R., Hosseini, M., Akbari, O. A., Afrouzi, H. H., Toghraie, D., Kashani, A., Alizadeh, A. A. (2021). Investigation the performance of solar chimney power plant for improving the efficiency and increasing the outlet power of turbines using computational fluid dynamics. Energy Reports, 7, 4555-4565.
DOI: 10.1016/j.egyr.2021.07.044
- Yapıcı, E.Ö., Ayli, E., Nsaif, O. (2020). Numerical investigation on the performance of a small scale solar chimney power plant for different geometrical parameters. Journal of Cleaner Production, 276, 122908.
DOI: 10.1016/j.jclepro.2020.122908
- Yazdi, M. H., Solomin, E., Fudholi, A., Sopian, K., Chong, P. L. (2021). Numerical analysis of the performance of a hybrid solar chimney system with an integrated external thermal source. Thermal Science and Engineering Progress, 26, 101127.
DOI: 10.1016/j.tsep.2021.101127
- Zuo, L., Zheng, Y., Li, Z., Sha, Y. (2011). Solar chimneys integrated with sea water desalination. Desalination, 276(1-3), 207-213.
DOI: 10.1016/j.desal.2011.03.052
- Zhang, Y., Sivakumar, M., Yang, S., Enever, K., Ramezanianpour, M. (2018). Application of solar energy in water treatment processes: A review. Desalination, 428, 116-145.
DOI: 10.1016/j.desal.2017.11.020