Araştırma Makalesi
BibTex RIS Kaynak Göster

Erkek Üreme Sisteminde SARS-CoV-2 RNA’sını Hedefleyen miRNA’ların ve Potansiyel Hedef Genlerinin İn Silico Olarak Belirlenmesi

Yıl 2025, Cilt: 15 Sayı: 1, 59 - 64, 03.01.2025
https://doi.org/10.33631/sabd.1469292

Öz

Amaç: Dünya genelinde milyonlarca mortalite ve morbiditeye neden olan SARS-CoV-2 enfeksiyonu insanlarda moleküler düzeyde çok sayıda farklı patolojiye sebep olmuştur. Yapılan çalışmalar bu virüsün erkek üreme hücreleri üzerine etkili olabileceğini göstermiştir. Bu çalışmada, SARS-CoV-2 enfeksiyonunun miRNA’lar aracılığı ile infertiliteye nasıl sebep olabileceğinin in silico araştırılması amaçlandı.
Gereç ve Yöntemler: Sağlıklı testis dokusunda en yüksek oranda ifade edilen miRNA’lar Tissue Atlas'tan elde edildi. Bu miRNA’lar arasından COVID-19 RNA’sını hedeflediği belirlenen miRNA’lar miRDB veri tabanından listelendi. Elde edilen liste makine öğrenimi algoritmasını kullanan miRWalk veri tabanı ile karşılaştırıldı. Ortak hedefler deneysel olarak doğrulanmış miRNA-hedef etkileşimleri veri tabanı olan miRTarBase ve sonrasında TargetScan ile eşleştirildi.
Bulgular: COVID-19 RNA dizisini hedefleyen ve in silico olarak endojen seviyelerinin etkilendiği tespit edilen testis dokusuna özgü miRNA’lar belirlendi. Bunlardan hsa-miR-195-5p, hsa-miR-16-5p, hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-497-5p ve hsa-miR-424-5p’nin mir-15/16 ailesinin, hsa-miR-30c-5p, hsa-miR-30b-5p, hsa-miR-30a-5p’nin ise mir-30 ailesinin üyeleri olduğu ortaya çıkarıldı. Bu miRNA’ların potansiyel hedef genlerinin arasında hücre döngüsü başta olmak üzere, DNA hasarı, apoptoz, spermatogenez ve viral cevapla ilgili olan ABL2, BCL2, PLEKHA1, WNK3, CCNT2, DICER1, CCND1, CCND2, CCND3 ve WEE1 genlerinin olduğu gösterildi.
Sonuç: Bu çalışma SARS-CoV-2 enfeksiyonu ile beraber testis dokusuna özgü miRNA’ların ve potansiyel hedef genlerinin ifadesinin değişebileceğini göstermektedir, böylece SARS-CoV-2 enfeksiyonunun erkeklerde testis üzerine etkisini moleküler olarak açıklamaya yardımcı olabilir.

Kaynakça

  • Sabetian S, Castiglioni I, Jahromi BN, Mousavi P, Cava C. In silico identification of mirna-lncrna interactions in male reproductive disorder associated with COVID-19 infection. Cells. 2021; 10(6): 1480.
  • Bridwell RE, Merrill DR, Griffith SA, Wray J, Oliver JJ. A coronavirus disease 2019 (COVID-19) patient with bilateral orchitis. Am J Emerg Med. 2021; 42: 260.e3- 260.e5.
  • Alvarez G, Molina M, Castilla JA, Clavero A, Gonzalvo MC, Sampedro A, et al. Study of SARS-CoV-2 in semen from asymptomatic donors with the presence of virus in nasopharyngeal swabs. Reprod Biomed Online. 2023; 47(6): 103321.
  • Cannarella R, Marino M, Crafa A, Bagnara V, La Vignera S, Condorelli RA, et al. Impact of COVID-19 on testicular function: a systematic review and meta-analysis. Endocrine. 2024; 85(1): 44-66.
  • Holtmann N, Edimiris P, Andree M, Doehmen C, Baston-Buest D, Adams O, et al. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil Steril. 2020; 114(2): 233-8.
  • Li H, Xiao X, Zhang J, Zafar MI, Wu C, Long Y, et al. Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine. 2020; 28: 100604.
  • Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem. 2018; 62: 2-10.
  • Gunes S, Esteves SC. Role of genetics and epigenetics in male infertility. Andrologia. 2021; 53(1): e13586.
  • Hekim N, Ergün S, Güneş S. Role of microRNAs in the pathophysiology of varicocele-related infertility. 2021; 23(4): 269-77.
  • Hekim N, Gunes S, Asci R, Henkel R, Abur U. Semiquantitative promoter methylation of MLH1 and MSH2 genes and their impact on sperm DNA fragmentation and chromatin condensation in infertile men. Andrologia. 2021; 53(1): e13827.
  • Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, function and role in cancer. Curr Genomics. 2010; 11(7): 537-61.
  • Bertolazzi G, Cipollina C, Benos PV, Tumminello M, Coronnello C. miR-1207-5p can contribute to dysregulation of inflammatory response in COVID-19 via targeting SARS-CoV-2 RNA. Front Cell Infect Microbiol. 2020; 10: 586592.
  • Fehlmann T, Ludwig N, Backes C, Meese E, Keller A. Distribution of microRNA biomarker candidates in solid tissues and body fluids. RNA Biol. 2016; 13(11): 1084-8.
  • Huang R, Chen J, Dong X, Zhang X, Luo W. Transcriptome data revealed the circRNA-miRNA-mRNA regulatory network during the proliferation and differentiation of myoblasts in shitou goose. Animals (Basel). 2024; 14(4): 576.
  • Rai B, Pande A, Tiwari S. TRAIL and EGFR Pathways targeting microRNAs are predominantly regulated in human diabetic nephropathy. Microrna. 2023; 12(2): 143-55.
  • Firoozi Z, Mohammadisoleimani E, Bagheri F, Taheri A, Pezeshki B, Naghizadeh MM, et al. Evaluation of the expression of ınfection-related long noncoding RNAs among COVID-19 patients: A case-control study. Genet Res (Camb). 2024; 2024: 3391054.
  • Pekarsky Y, Croce CM. Role of miR-15/16 in CLL. Cell Death Differ. 2015; 22(1): 6-11.
  • Zidan HE, Abdul-Maksoud RS, Elsayed WSH, Desoky EAM. Diagnostic and prognostic value of serum miR-15a and miR-16-1 expression among egyptian patients with prostate cancer. IUBMB Life. 2018; 70(5): 437-44.
  • Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A, et al. miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene. 2014; 33(19): 2495-503.
  • Kumar B, Khaleghzadegan S, Mears B, Hatano K, Kudrolli TA, Chowdhury WH, et al. Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget. 2016; 7(45): 72593-607.
  • Zhang Y, Li Y. Long non-coding RNA NORAD contributes to the proliferation, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/beta-catenin pathway. Cancer Cell Int. 2020; 20(1): 571.
  • Sharma P, Kaushal N, Saleth LR, Ghavami S, Dhingra S, Kaur P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim Biophys Acta Mol Basis Dis. 2023; 1869(6): 166742.
  • Afsari M, Talebi AR, Tafti FD, Makki M, Fesahat F. Differential apoptotic gene expression in the male partners of infertile couples with normal and abnormal sperm parameters. JBRA Assist Reprod. 2022; 26(4): 606-11.
  • Liu J, Mochida K, Hasegawa A, Inoue K, Ogura A. Identification of quantitative trait loci associated with the susceptibility of mouse spermatozoa to cryopreservation. J Reprod Dev. 2018; 64(2): 117-27.
  • Shi ZH, Zhao C, Wu H, Liu XM. Expression of RhoGDI alpha in human testes and sperm and its correlation with the success rate of IVF. Zhonghua Nan Ke Xue. 2011; 17(4): 325-9.
  • Togawa A, Miyoshi J, Ishizaki H, Tanaka M, Takakura A, Nishioka H, et al. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIalpha. Oncogene. 1999; 18(39): 5373-80.
  • Ozawa M, Fukuda T, Sakamoto R, Honda H, Yoshida N. The histone demethylase FBXL10 regulates the proliferation of spermatogonia and ensures long-term sustainable spermatogenesis in mice. Biol Reprod. 2016; 94(4): 92.
  • Boekhout M, Karasu ME, Wang J, Acquaviva L, Pratto F, Brick K, et al. REC114 partner ANKRD31 controls number, timing, and location of meiotic DNA breaks. Mol Cell. 2019; 74(5): 1053-68 e8.
  • Liu F, Xu ZL, Qian XJ, Qiu WY, Huang H. Expression of Hsf1, Hsf2, and Phlda1 in cells undergoing cryptorchid-induced apoptosis in rat testes. Mol Reprod Dev. 2011; 78(4): 283-91.
  • Verissimo F, Silva E, Morris JD, Pepperkok R, Jordan P. Protein kinase WNK3 increases cell survival in a caspase-3-dependent pathway. Oncogene. 2006; 25(30): 4172-82.
  • Fakhro KA, Elbardisi H, Arafa M, Robay A, Rodriguez-Flores JL, Al-Shakaki A, et al. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med. 2018; 20(11): 1365-73.
  • Kuo YC, Lin YH, Chen HI, Wang YY, Chiou YW, Lin HH, et al. SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat. 2012; 33(4): 710-9.
  • Vahabi Barzi N, Kakavand K, Sodeifi N, Ghezelayagh Z, Sabbaghian M. Expression and localization of Septin 14 gene and protein in infertile men testis. Reprod Biol. 2020; 20(2): 164-8.
  • Lin CH, Shen YR, Wang HY, Chiang CW, Wang CY, Kuo PL. Regulation of septin phosphorylation: SEPT12 phosphorylation in sperm septin assembly. Cytoskeleton (Hoboken). 2019; 76(1): 137-42.
  • Singh P, Patel RK, Palmer N, Grenier JK, Paduch D, Kaldis P, et al. CDK2 kinase activity is a regulator of male germ cell fate. Development. 2019; 146(21). dev180273.
  • Teng Y, Wang Y, Fu J, Cheng X, Miao S, Wang L. Cyclin T2: a novel miR-15a target gene involved in early spermatogenesis. FEBS Lett. 2011; 585(15): 2493-500.
  • Tian R, Guan X, Qian H, Wang L, Shen Z, Fang L, et al. Restoration of NRF2 attenuates myocardial ischemia reperfusion injury through mediating microRNA-29a-3p/CCNT2 axis. Biofactors. 2021; 47(3): 414-26.
  • Dutta D, Liu J, Xiong H. The impact of COVID-19 on people living with HIV-1 and HIV-1-associated neurological complications. Viruses. 2023; 15(5): 1117.
  • Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020; 181(5): 1036-45 e9.
  • Han Q, Chen G, Wang J, Jee D, Li WX, Lai EC, et al. Mechanism and function of antiviral RNA interference in mice. mBio. 2020;11(4): e03278-19.
  • Walker WH. Regulation of mammalian spermatogenesis by miRNAs. Semin Cell Dev Biol. 2022; 121: 24-31.
  • Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, et al. Dicer is required for haploid male germ cell differentiation in mice. PLoS One. 2011; 6(9): e24821.
  • Zindy F, den Besten W, Chen B, Rehg JE, Latres E, Barbacid M, et al. Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18(Ink4c) and p19(Ink4d). Mol Cell Biol. 2001; 21(9): 3244-55.
  • Lee TH, Choi JY, Park JM, Kang TH. Posttranscriptional control of the replication stress response via TTP-mediated Claspin mRNA stabilization. Oncogene. 2020; 39(16): 3245-57.
  • Sadeghi H, Golalipour M, Yamchi A, Farazmandfar T, Shahbazi M. CDC25A pathway toward tumorigenesis: Molecular targets of CDC25A in cell-cycle regulation. J Cell Biochem. 2019; 120(3): 2919-28.
  • Makela JA, Toppari J. Retinoblastoma-E2F transcription factor interplay is essential for testicular development and male fertility. Front Endocrinol (Lausanne). 2022; 13: 903684.
  • La HM, Chan AL, Legrand JMD, Rossello FJ, Gangemi CG, Papa A, et al. GILZ-dependent modulation of mTORC1 regulates spermatogonial maintenance. Development. 2018; 145(18): dev165324.
  • Sujit KM, Sarkar S, Singh V, Pandey R, Agrawal NK, Trivedi S, et al. Genome-wide differential methylation analyses identifies methylation signatures of male infertility. Hum Reprod. 2018; 33(12): 2256-67.

In Silico Identification of miRNAs and Their Potential Target Genes Targeting SARS-CoV-2 RNA in the Male Reproductive System

Yıl 2025, Cilt: 15 Sayı: 1, 59 - 64, 03.01.2025
https://doi.org/10.33631/sabd.1469292

Öz

Aim: SARS-CoV-2 infection, which causes millions of deaths and morbidities worldwide, has caused many different pathologies at the molecular level in humans. Studies have shown that this virus can affect male reproductive cells. This study aimed to investigate in silico how SARS-CoV-2 infection may cause infertility through miRNAs.
Material and Methods: The most expressed miRNAs in healthy testicular tissue were obtained from Tissue Atlas. Among these miRNAs, miRNAs determined to target COVID-19 RNA were listed in the miRDB database. The resulting list was compared with the miRWalk database which uses the machine learning algorithm. Common targets were matched using miRTarBase, a database of experimentally validated miRNA-target interactions, and subsequently TargetScan.
Results: Testicular tissue-specific miRNAs that target the COVID-19 RNA sequence and whose endogenous levels were found to be affected in silico were identified. Of these, hsa-miR-195-5p, hsa-miR-16-5p, hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-497-5p and hsa-miR-424-5p were determined to be members of the mir-15/16 family, and hsa-miR-30c-5p, hsa-miR-30b-5p, hsa-miR-30a-5p were revealed to be members of the mir-30 family. It was also shown that the potential target genes of these miRNAs include ABL2, BCL2, PLEKHA1, WNK3, CCNT2, DICER1, CCND1, CCND2, CCND3 and WEE1, which are related to cell cycle, DNA damage, apoptosis, spermatogenesis and viral response.
Conclusion: This study shows that the expression of testicular tissue-specific miRNAs and potential target genes may change with SARS-CoV-2 infection, thus it may help to molecularly explain the effect of SARS-CoV-2 infection on the testis in men.

Kaynakça

  • Sabetian S, Castiglioni I, Jahromi BN, Mousavi P, Cava C. In silico identification of mirna-lncrna interactions in male reproductive disorder associated with COVID-19 infection. Cells. 2021; 10(6): 1480.
  • Bridwell RE, Merrill DR, Griffith SA, Wray J, Oliver JJ. A coronavirus disease 2019 (COVID-19) patient with bilateral orchitis. Am J Emerg Med. 2021; 42: 260.e3- 260.e5.
  • Alvarez G, Molina M, Castilla JA, Clavero A, Gonzalvo MC, Sampedro A, et al. Study of SARS-CoV-2 in semen from asymptomatic donors with the presence of virus in nasopharyngeal swabs. Reprod Biomed Online. 2023; 47(6): 103321.
  • Cannarella R, Marino M, Crafa A, Bagnara V, La Vignera S, Condorelli RA, et al. Impact of COVID-19 on testicular function: a systematic review and meta-analysis. Endocrine. 2024; 85(1): 44-66.
  • Holtmann N, Edimiris P, Andree M, Doehmen C, Baston-Buest D, Adams O, et al. Assessment of SARS-CoV-2 in human semen-a cohort study. Fertil Steril. 2020; 114(2): 233-8.
  • Li H, Xiao X, Zhang J, Zafar MI, Wu C, Long Y, et al. Impaired spermatogenesis in COVID-19 patients. EClinicalMedicine. 2020; 28: 100604.
  • Vander Borght M, Wyns C. Fertility and infertility: Definition and epidemiology. Clin Biochem. 2018; 62: 2-10.
  • Gunes S, Esteves SC. Role of genetics and epigenetics in male infertility. Andrologia. 2021; 53(1): e13586.
  • Hekim N, Ergün S, Güneş S. Role of microRNAs in the pathophysiology of varicocele-related infertility. 2021; 23(4): 269-77.
  • Hekim N, Gunes S, Asci R, Henkel R, Abur U. Semiquantitative promoter methylation of MLH1 and MSH2 genes and their impact on sperm DNA fragmentation and chromatin condensation in infertile men. Andrologia. 2021; 53(1): e13827.
  • Macfarlane LA, Murphy PR. MicroRNA: Biogenesis, function and role in cancer. Curr Genomics. 2010; 11(7): 537-61.
  • Bertolazzi G, Cipollina C, Benos PV, Tumminello M, Coronnello C. miR-1207-5p can contribute to dysregulation of inflammatory response in COVID-19 via targeting SARS-CoV-2 RNA. Front Cell Infect Microbiol. 2020; 10: 586592.
  • Fehlmann T, Ludwig N, Backes C, Meese E, Keller A. Distribution of microRNA biomarker candidates in solid tissues and body fluids. RNA Biol. 2016; 13(11): 1084-8.
  • Huang R, Chen J, Dong X, Zhang X, Luo W. Transcriptome data revealed the circRNA-miRNA-mRNA regulatory network during the proliferation and differentiation of myoblasts in shitou goose. Animals (Basel). 2024; 14(4): 576.
  • Rai B, Pande A, Tiwari S. TRAIL and EGFR Pathways targeting microRNAs are predominantly regulated in human diabetic nephropathy. Microrna. 2023; 12(2): 143-55.
  • Firoozi Z, Mohammadisoleimani E, Bagheri F, Taheri A, Pezeshki B, Naghizadeh MM, et al. Evaluation of the expression of ınfection-related long noncoding RNAs among COVID-19 patients: A case-control study. Genet Res (Camb). 2024; 2024: 3391054.
  • Pekarsky Y, Croce CM. Role of miR-15/16 in CLL. Cell Death Differ. 2015; 22(1): 6-11.
  • Zidan HE, Abdul-Maksoud RS, Elsayed WSH, Desoky EAM. Diagnostic and prognostic value of serum miR-15a and miR-16-1 expression among egyptian patients with prostate cancer. IUBMB Life. 2018; 70(5): 437-44.
  • Kao CJ, Martiniez A, Shi XB, Yang J, Evans CP, Dobi A, et al. miR-30 as a tumor suppressor connects EGF/Src signal to ERG and EMT. Oncogene. 2014; 33(19): 2495-503.
  • Kumar B, Khaleghzadegan S, Mears B, Hatano K, Kudrolli TA, Chowdhury WH, et al. Identification of miR-30b-3p and miR-30d-5p as direct regulators of androgen receptor signaling in prostate cancer by complementary functional microRNA library screening. Oncotarget. 2016; 7(45): 72593-607.
  • Zhang Y, Li Y. Long non-coding RNA NORAD contributes to the proliferation, invasion and EMT progression of prostate cancer via the miR-30a-5p/RAB11A/WNT/beta-catenin pathway. Cancer Cell Int. 2020; 20(1): 571.
  • Sharma P, Kaushal N, Saleth LR, Ghavami S, Dhingra S, Kaur P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim Biophys Acta Mol Basis Dis. 2023; 1869(6): 166742.
  • Afsari M, Talebi AR, Tafti FD, Makki M, Fesahat F. Differential apoptotic gene expression in the male partners of infertile couples with normal and abnormal sperm parameters. JBRA Assist Reprod. 2022; 26(4): 606-11.
  • Liu J, Mochida K, Hasegawa A, Inoue K, Ogura A. Identification of quantitative trait loci associated with the susceptibility of mouse spermatozoa to cryopreservation. J Reprod Dev. 2018; 64(2): 117-27.
  • Shi ZH, Zhao C, Wu H, Liu XM. Expression of RhoGDI alpha in human testes and sperm and its correlation with the success rate of IVF. Zhonghua Nan Ke Xue. 2011; 17(4): 325-9.
  • Togawa A, Miyoshi J, Ishizaki H, Tanaka M, Takakura A, Nishioka H, et al. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIalpha. Oncogene. 1999; 18(39): 5373-80.
  • Ozawa M, Fukuda T, Sakamoto R, Honda H, Yoshida N. The histone demethylase FBXL10 regulates the proliferation of spermatogonia and ensures long-term sustainable spermatogenesis in mice. Biol Reprod. 2016; 94(4): 92.
  • Boekhout M, Karasu ME, Wang J, Acquaviva L, Pratto F, Brick K, et al. REC114 partner ANKRD31 controls number, timing, and location of meiotic DNA breaks. Mol Cell. 2019; 74(5): 1053-68 e8.
  • Liu F, Xu ZL, Qian XJ, Qiu WY, Huang H. Expression of Hsf1, Hsf2, and Phlda1 in cells undergoing cryptorchid-induced apoptosis in rat testes. Mol Reprod Dev. 2011; 78(4): 283-91.
  • Verissimo F, Silva E, Morris JD, Pepperkok R, Jordan P. Protein kinase WNK3 increases cell survival in a caspase-3-dependent pathway. Oncogene. 2006; 25(30): 4172-82.
  • Fakhro KA, Elbardisi H, Arafa M, Robay A, Rodriguez-Flores JL, Al-Shakaki A, et al. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med. 2018; 20(11): 1365-73.
  • Kuo YC, Lin YH, Chen HI, Wang YY, Chiou YW, Lin HH, et al. SEPT12 mutations cause male infertility with defective sperm annulus. Hum Mutat. 2012; 33(4): 710-9.
  • Vahabi Barzi N, Kakavand K, Sodeifi N, Ghezelayagh Z, Sabbaghian M. Expression and localization of Septin 14 gene and protein in infertile men testis. Reprod Biol. 2020; 20(2): 164-8.
  • Lin CH, Shen YR, Wang HY, Chiang CW, Wang CY, Kuo PL. Regulation of septin phosphorylation: SEPT12 phosphorylation in sperm septin assembly. Cytoskeleton (Hoboken). 2019; 76(1): 137-42.
  • Singh P, Patel RK, Palmer N, Grenier JK, Paduch D, Kaldis P, et al. CDK2 kinase activity is a regulator of male germ cell fate. Development. 2019; 146(21). dev180273.
  • Teng Y, Wang Y, Fu J, Cheng X, Miao S, Wang L. Cyclin T2: a novel miR-15a target gene involved in early spermatogenesis. FEBS Lett. 2011; 585(15): 2493-500.
  • Tian R, Guan X, Qian H, Wang L, Shen Z, Fang L, et al. Restoration of NRF2 attenuates myocardial ischemia reperfusion injury through mediating microRNA-29a-3p/CCNT2 axis. Biofactors. 2021; 47(3): 414-26.
  • Dutta D, Liu J, Xiong H. The impact of COVID-19 on people living with HIV-1 and HIV-1-associated neurological complications. Viruses. 2023; 15(5): 1117.
  • Blanco-Melo D, Nilsson-Payant BE, Liu WC, Uhl S, Hoagland D, Moller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020; 181(5): 1036-45 e9.
  • Han Q, Chen G, Wang J, Jee D, Li WX, Lai EC, et al. Mechanism and function of antiviral RNA interference in mice. mBio. 2020;11(4): e03278-19.
  • Walker WH. Regulation of mammalian spermatogenesis by miRNAs. Semin Cell Dev Biol. 2022; 121: 24-31.
  • Korhonen HM, Meikar O, Yadav RP, Papaioannou MD, Romero Y, Da Ros M, et al. Dicer is required for haploid male germ cell differentiation in mice. PLoS One. 2011; 6(9): e24821.
  • Zindy F, den Besten W, Chen B, Rehg JE, Latres E, Barbacid M, et al. Control of spermatogenesis in mice by the cyclin D-dependent kinase inhibitors p18(Ink4c) and p19(Ink4d). Mol Cell Biol. 2001; 21(9): 3244-55.
  • Lee TH, Choi JY, Park JM, Kang TH. Posttranscriptional control of the replication stress response via TTP-mediated Claspin mRNA stabilization. Oncogene. 2020; 39(16): 3245-57.
  • Sadeghi H, Golalipour M, Yamchi A, Farazmandfar T, Shahbazi M. CDC25A pathway toward tumorigenesis: Molecular targets of CDC25A in cell-cycle regulation. J Cell Biochem. 2019; 120(3): 2919-28.
  • Makela JA, Toppari J. Retinoblastoma-E2F transcription factor interplay is essential for testicular development and male fertility. Front Endocrinol (Lausanne). 2022; 13: 903684.
  • La HM, Chan AL, Legrand JMD, Rossello FJ, Gangemi CG, Papa A, et al. GILZ-dependent modulation of mTORC1 regulates spermatogonial maintenance. Development. 2018; 145(18): dev165324.
  • Sujit KM, Sarkar S, Singh V, Pandey R, Agrawal NK, Trivedi S, et al. Genome-wide differential methylation analyses identifies methylation signatures of male infertility. Hum Reprod. 2018; 33(12): 2256-67.
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Üreme Tıbbı (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Neslihan Hekim 0000-0002-8470-2848

Sezgin Güneş 0000-0002-3103-6482

Sercan Ergün 0000-0002-6733-9848

Yayımlanma Tarihi 3 Ocak 2025
Gönderilme Tarihi 16 Nisan 2024
Kabul Tarihi 4 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

Vancouver Hekim N, Güneş S, Ergün S. Erkek Üreme Sisteminde SARS-CoV-2 RNA’sını Hedefleyen miRNA’ların ve Potansiyel Hedef Genlerinin İn Silico Olarak Belirlenmesi. SABD. 2025;15(1):59-64.