Araştırma Makalesi
BibTex RIS Kaynak Göster

İNFERTİL HASTALARIN GRANÜLOZA HÜCRELERİNDE LİQUİRİTİGENİN’İN LÖSEMİ İNHİBİTÖR FAKTÖR RESEPTÖRÜ ÜZERİNE ETKİLERİ

Yıl 2022, Cilt: 5 Sayı: 3, 172 - 178, 16.11.2022
https://doi.org/10.26650/JARHS2022-1129686

Öz

Amaç: Granüloza hücreleri oosit beslenmesi ve olgunlaşması, kapasitasyon ve akrozom reaksiyonu gibi oosit-sperm etkileşimi olayları üzerine önemli bir role sahiptir. Bu nedenle, granüloza hücreleri ile ilgili çalışmalar, oositin sağlıklı gelişmesi ve fertilizasyon için de önemlidir. Çalışmada ovulatuar faktör (OF, infertil) ve erkek faktörü nedeniyle (EF, sağlıklı bireyler) in vitro fertilizasyon (IVF) ünitesine başvuran hastaların oosit-kümülüs kompleksinden elde edilen granüloza hücrelerinde, in vitro ortamda liquiritigenin ’in (LQ) etkilerinin immünositokimyasal olarak incelenmesi amaçlanmıştır. Gereç ve Yöntem: Çalışmada OF ve EF nedeni ile İstanbul Üniversitesi Tıp Fakültesi tüp bebek IVF ünitesine başvuran hastalar alındı. 5 EF ve 5 OF hastasından alınan granüloza hücreleri kültür ortamında EF, EF- Dimetil sülfoksit (DMSO), EF-LQ, OF, OF-DMSO ve OF-LQ gruplarına ayrıldı. Hücreler uygulama sonrası lösemi inhibitör faktör reseptör (LIFR) immünositokimyasal boyaması yapılarak Aperio ImageScope analiz proğramıyla boyanma şiddeti ve hücre morfolojisi bakımından incelendi. Bulgular: OF ve OF-DMSO gruplarının granüloza hücrelerinde LIFR immünositokimya boyanma şiddeti, EF ve EF-DMSO gruplarına göre anlamlı olarak azalmıştır. EF-LQ ve OF-LQ gruplarının, granüloza hücrelerinde LIFR immünositokimya boyanma şiddeti bakımından diğer gruplarla karşılaştırıldığında aralarında anlamlı bir artış olduğu saptanmıştır. OF ve OF-DMSO gruplarının granüloza hücrelerinde, apoptotik hücre morfolojisini yansıtan bulgular gözlenirken, EF-LQ ve OF-LQ gruplarında ise hiç veya daha az olarak gözlenmiştir. Sonuç: LQ-gruplarının granüloza hücrelerinde LIFR immünositokimya boyanma şiddeti algoritmaları, özellikle OF ve OF-DMSO gruplarına göre yüksek saptanmış ve apoptotik hücre morfolojisi üzerine olumlu etkileri gözlenmiştir. Bu sonuçlar, LQ ‘nun IVF ünitelerinde alternatif bir medyum ajanı olarak kullanılabileceğini düşündürmektedir. Bu nedenle LQ ‘nun klinikde kullanılabilmesiyle ilgili daha kapsamlı çalışmalara ihtiyaç duyulmaktadır.

Destekleyen Kurum

ÖYP bütçesi

Proje Numarası

ÖYP proje numarası : 393.2019-DR-35/27-01

Kaynakça

  • 1. Nikolakopoulou K, Turco MY. Investigation of infertility using endometrial organoids. Reproduction 2021;161(5):R113-27. google scholar
  • 2. Lee JW, Hyun MK, Kim HJ, Kim DI. Acupuncture and herbal medicine for female infertility: An overview of systematic reviews. Integr Med Res 2021;10(3):100694. google scholar
  • 3. Showell MG, Mackenzie-Proctor R, Jordan V, Hart RJ. Antioxidants for female subfertility. Cochrane Database Syst Rev 2017;7(7):CD007807. google scholar
  • 4. Sreerangaraja Urs DB, Wu WH, Komrskova K, Postlerova P, Lin YF, Tzeng CR, et al. Mitochondrial function in modulating human granulosa cell steroidogenesis and female fertility. Int J Mol Sci 2020;21(10):3592. google scholar
  • 5. Szamatowicz M. Assisted reproductive technology in reproductive medicine - possibilities and limitations. Ginekol Pol 2016;87(12):820-3. google scholar
  • 6. Wyndham N, Marin Figueira PG, Patrizio P. A persistent misperception: Assisted reproductive technology can reverse the “aged biological clock”. Fertil Steril 2012;97(5):1044-7. google scholar
  • 7. Strauss III JF, Modi B, McAllister JM. Defects in ovarian steroid hormone biosynthesis. Cellular Endocrinology in Health and Disease 2014;285-309. google scholar
  • 8. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: A review. Reprod Biol Endocrinol 2012;10(1):49. google scholar
  • 9. Ruder EH, Hartman TJ, Blumberg J, Goldman MB. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum Reprod Update 2008;14(4):345-57. google scholar
  • 10. Wang S, He G, Chen M, Zuo T, Xu W, Liu X. The role of antioxidant enzymes in the ovaries. Oxid Med Cell Longev 2017;2017:4371714. google scholar
  • 11. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 2010;42(10):1634-50. google scholar
  • 12. Machlin LJ, Bendich A. Free radical tissue damage: Protective role of antioxidant nutrients. Faseb J 1987;1(6):441-5. google scholar
  • 13. Bouraki G, Metallinou C, Simopoulou M, Charalabopoulos K, Asimakopoulos B. Comparison of nine media in the culture of human ovarian granulosa lutein cells. In Vivo 2012;26(5):823-5. google scholar
  • 14. Grzelak A, Rychlik B, Bartosz G. Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med 2001;30(12):1418-25. google scholar
  • 15. Martın-Romero FJ, Miguel-Lasobras EM, Domınguez-Arroyo JA, Gonzalez-Carrera E, Alvarez IS. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod Biomed Online 2008;17(5):652-61. google scholar
  • 16. De Andrade Melo-Sterza F, Poehland R. Lipid metabolism in bovine oocytes and early embryos under in vivo, in vitro, and stress conditions. Int J Mol Sci 2021;22(7):3421. google scholar
  • 17. Lewis N, Hinrichs K, Leese HJ, Mc GAC, Brison DR, Sturmey R. Energy metabolism of the equine cumulus oocyte complex during in vitro maturation. Sci Rep 2020;10(1):3493. google scholar
  • 18. Fontana J, Mardnkovâ S, Petr J, Zalmanova T, Trnka J. Metabolic cooperation in the ovarian follicle. Physiol Res 2020;69(1):33-48. google scholar
  • 19. Abir R, Fisch B, Jin S, Barnnet M,Freimann S, Hurk Van den R, et al. google scholar
  • 20. Li Y, Sun L, Zhao D, Ouyang J, Xiang M. Aberrant expression of leukemia inhibitory factor receptor (lifr) and leukemia inhibitory factor (lif) is associated with tubal pregnancy occurrence. Turk J Med Sci 2015;45(1):214-20. google scholar
  • 21. Cadoret V, Jarrier-Gaillard P, Papillier P, Monniaux D, Guerif F, Dalbies-Tran R. Leukaemia inhibitory factor modulates the differentiation of granulosa cells during sheep in vitro preantral to antral follicle development and improves oocyte meiotic competence. Mol Hum Reprod 2021;27(9):gaab051. google scholar
  • 22. Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, et al. google scholar
  • 23. Shin YW, Bae EA, Lee B, Lee SH, Kim JA, Kim YS, et al. google scholar
  • 24. Park SM,Ki SH,Han NR, Cho IJ, Ku SK, Kim SC, et al. google scholar
  • 25. Zhang SP, Zhou YJ, Liu Y, Cai YQ. Effect of liquiritigenin, a flavanone existed from radix glycyrrhizae on pro-apoptotic in smmc-7721 cells. Food Chem Toxicol 2009;47(4):693-701. google scholar
  • 26. Huang CH, Wang FT, Chan WH. Prevention of ochratoxin a-induced oxidative stress-mediated apoptotic processes and impairment of embryonic development in mouse blastocysts by liquiritigenin. Environ Toxicol 2019;34(5):573-84. google scholar
  • 27. Jung EH, Lee JH, Kim SC, Kim YW. Ampk activation by liquiritigenin inhibited oxidative hepatic injury and mitochondrial dysfunction induced by nutrition deprivation as mediated with induction of farnesoid x receptor. Eur J Nutr 2017;56(2):635-47. google scholar
  • 28. Huang CH, Chan WH. Protective effects of liquiritigenin against citrinin-triggered, oxidative-stress-mediated apoptosis and disruption of embryonic development in mouse blastocysts. Int J Mol Sci 2017;18(12):2538. google scholar
  • 29. Köktürk S, Ceylan S, Etus V, Yasa N, Ceylan S. Morinda citrifolia l. (noni) and memantine attenuate periventricular tissue injury of the fourth ventricle in hydrocephalic rabbits. Neural Regen Res 2013;8(9):773-82. google scholar
  • 30. Almubarak AM, Kim E, Yu IJ, Jeon Y. Supplementation with niacin during in vitro maturation improves the quality of porcine embryos. Theriogenology 2021;169:36-46. google scholar
  • 31. Choi H, Lee J, Yoon JD, Hwang SU, Cai L, Kim M, et al. The effect of copper supplementation on in vitro maturation of porcine cumulus-oocyte complexes and subsequent developmental competence after parthenogenetic activation. Theriogenology 2021;164:84-92. google scholar
  • 32. Tripathi A, Shrivastav TG, Chaube SK. An increase of granulosa cell apoptosis mediates aqueous neem (azadirachta indica) leaf extract-induced oocyte apoptosis in rat. Int J Appl Basic Med Res 2013;3(1):27-36. google scholar
  • 33. Gallegos E, Ascona M, Monroy J, Castro-Manrreza ME, Aragon-Mardnez A, Ayala ME. P-chloroamphetamine decreases serotonin and induces apoptosis in granulosa cells and follicular atresia in prepubertal female rats. Reprod Toxicol 2022;110:150-60. google scholar
  • 34. Saini S, Sharma V, Ansari S, Kumar A, Thakur A, Malik H, et al. google scholar
  • 35. Boldura OM, Marc S, Otava G, Hutu I, Balta C, Tulcan C, et al. google scholar
  • 36. Cordova A, Miranda MS, King WA, Mastromonaco GF. Effects of EGF and melatonin on gene expression of cumulus cells and further in vitro embryo development in bovines. Zygote 2022:1-11. doi: 10.1017/S0967199421000940. google scholar
  • 37. Sanchez-Ajofrinab I,Martı'n-Maestrob A, Medina-ChâvezbJuan DA, Laborda-Gomarizb JA,Peris-Frau P, et al. google scholar
  • 38. Qian Y, Zou X, Liang X, Lu N,Cui Y, Liu J, et al. google scholar
  • 39. Zhanga M, Xue Y, Zheng B, Li L, Chu X, Zhao Y, et al. google scholar
  • 40. Yuan X, Wang Z, Zhang L, Sui R, Khan S. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in alzheimer’s disease. Int J Biol Macromol 2021;183:1184-90. google scholar
  • 41. Choi EM. Liquiritigenin isolated from glycyrrhiza uralensis stimulates osteoblast function in osteoblastic mc3t3-e1 cells. Int Immunopharmacol 2012;12(1):139-43. google scholar
  • 42. Shi C,Wu H, Xu K, Cai T, Qin K, Wu L, et al. google scholar
  • 43. Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (lif) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 2002;188(1-2):65-73. google scholar
  • 44. Eckert J, Niemann H. mRNA expression of leukaemia inhibitory factor (lif) and its receptor subunits glycoprotein 130 and lif-receptor-beta in bovine embryos derived in vitro or in vivo. Mol Hum Reprod 1998;4(10):957-65. google scholar
  • 45. Eswari S, Sai Kumar G, Sharma GT. Expression of mRNA encoding leukaemia inhibitory factor (lif) and its receptor (lifr|3) in buffalo preimplantation embryos produced in vitro: Markers of successful embryo implantation. Zygote 2013;21(2):203-13. google scholar
  • 46. Taghizabet N, Khalili MA, Anbari F, Rahimi AA, Nottola SA, Macchiarelli G, et al. Human cumulus cell sensitivity to vitrification, an ultrastructural study. Zygote 2018;26(3):224-31. google scholar

THE EFFECTS OF LIQUIRITIGEN ON THE LUKEMIA INHIBITORY FACTOR RECEPTOR IN GRANULOSA CELLS OF INFERTILE PATIENTS

Yıl 2022, Cilt: 5 Sayı: 3, 172 - 178, 16.11.2022
https://doi.org/10.26650/JARHS2022-1129686

Öz

Objectives: Granulosa cells have an important role in oocyte nutrition and maturation, oocyte-sperm interaction events such as capacitation, and acrosome reaction. Therefore, studies with granulosa cells are also important for the healthy development of the oocyte and fertilization. The aim of this study was to investigate the effects of liquiritigenin (LQ) in vitro on granulosa cells that were obtained from the oocyte-cumulus complex of patients who were treated in the in vitro fertilization (IVF) unit due to ovulatory factor (OF, infertile) and male factor (MF, healthy). Materials and Methods: This study included patients who were treated in the IVF unit of the Istanbul University Faculty of Medicine due to OF and MF. Granulosa cells obtained from 5 MF and 5 OF patients were divided into MF, MF-Dimethyl sulfoxide (DMSO), MF-LQ, OF, OF-DMSO and OF-LQ groups in culture medium. After the application, the cells were stained with the leukemia inhibitory factor receptor (LIFR) immunocytochemical staining and the staining intensity was examined with the Aperio ImageScope analysis software and cell morphology. Results: The LIFR immunocytochemistry staining intensity in the granulosa cells of the OF and OF-DMSO groups was significantly decreased when compared to the MF and MF-DMSO groups. The LIFR staining intensity in the granulosa cells of the MF-LQ and OF-LQ groups were determined to be significantly higher than the other groups. In the granulosa cells of OF and OF-DMSO groups, the findings reflected apoptotic cell morphology, but showed no or less apoptotic cell morphology in the MF-LQ and OF-LQ groups. Conclusions: In granulosa cells of LQ-groups, LIFR immunocytochemistry staining intensity algorithms were obtained as significantly higher than in the especially the OF and OF-DMSO groups, and showed the positive effects on apoptotic cell morphology. These results suggest that LQ may be used as an alternative medium agent in IVF units. Therefore, more comprehensive studies are needed for the clinical use of LQ. 

Proje Numarası

ÖYP proje numarası : 393.2019-DR-35/27-01

Kaynakça

  • 1. Nikolakopoulou K, Turco MY. Investigation of infertility using endometrial organoids. Reproduction 2021;161(5):R113-27. google scholar
  • 2. Lee JW, Hyun MK, Kim HJ, Kim DI. Acupuncture and herbal medicine for female infertility: An overview of systematic reviews. Integr Med Res 2021;10(3):100694. google scholar
  • 3. Showell MG, Mackenzie-Proctor R, Jordan V, Hart RJ. Antioxidants for female subfertility. Cochrane Database Syst Rev 2017;7(7):CD007807. google scholar
  • 4. Sreerangaraja Urs DB, Wu WH, Komrskova K, Postlerova P, Lin YF, Tzeng CR, et al. Mitochondrial function in modulating human granulosa cell steroidogenesis and female fertility. Int J Mol Sci 2020;21(10):3592. google scholar
  • 5. Szamatowicz M. Assisted reproductive technology in reproductive medicine - possibilities and limitations. Ginekol Pol 2016;87(12):820-3. google scholar
  • 6. Wyndham N, Marin Figueira PG, Patrizio P. A persistent misperception: Assisted reproductive technology can reverse the “aged biological clock”. Fertil Steril 2012;97(5):1044-7. google scholar
  • 7. Strauss III JF, Modi B, McAllister JM. Defects in ovarian steroid hormone biosynthesis. Cellular Endocrinology in Health and Disease 2014;285-309. google scholar
  • 8. Agarwal A, Aponte-Mellado A, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: A review. Reprod Biol Endocrinol 2012;10(1):49. google scholar
  • 9. Ruder EH, Hartman TJ, Blumberg J, Goldman MB. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum Reprod Update 2008;14(4):345-57. google scholar
  • 10. Wang S, He G, Chen M, Zuo T, Xu W, Liu X. The role of antioxidant enzymes in the ovaries. Oxid Med Cell Longev 2017;2017:4371714. google scholar
  • 11. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 2010;42(10):1634-50. google scholar
  • 12. Machlin LJ, Bendich A. Free radical tissue damage: Protective role of antioxidant nutrients. Faseb J 1987;1(6):441-5. google scholar
  • 13. Bouraki G, Metallinou C, Simopoulou M, Charalabopoulos K, Asimakopoulos B. Comparison of nine media in the culture of human ovarian granulosa lutein cells. In Vivo 2012;26(5):823-5. google scholar
  • 14. Grzelak A, Rychlik B, Bartosz G. Light-dependent generation of reactive oxygen species in cell culture media. Free Radic Biol Med 2001;30(12):1418-25. google scholar
  • 15. Martın-Romero FJ, Miguel-Lasobras EM, Domınguez-Arroyo JA, Gonzalez-Carrera E, Alvarez IS. Contribution of culture media to oxidative stress and its effect on human oocytes. Reprod Biomed Online 2008;17(5):652-61. google scholar
  • 16. De Andrade Melo-Sterza F, Poehland R. Lipid metabolism in bovine oocytes and early embryos under in vivo, in vitro, and stress conditions. Int J Mol Sci 2021;22(7):3421. google scholar
  • 17. Lewis N, Hinrichs K, Leese HJ, Mc GAC, Brison DR, Sturmey R. Energy metabolism of the equine cumulus oocyte complex during in vitro maturation. Sci Rep 2020;10(1):3493. google scholar
  • 18. Fontana J, Mardnkovâ S, Petr J, Zalmanova T, Trnka J. Metabolic cooperation in the ovarian follicle. Physiol Res 2020;69(1):33-48. google scholar
  • 19. Abir R, Fisch B, Jin S, Barnnet M,Freimann S, Hurk Van den R, et al. google scholar
  • 20. Li Y, Sun L, Zhao D, Ouyang J, Xiang M. Aberrant expression of leukemia inhibitory factor receptor (lifr) and leukemia inhibitory factor (lif) is associated with tubal pregnancy occurrence. Turk J Med Sci 2015;45(1):214-20. google scholar
  • 21. Cadoret V, Jarrier-Gaillard P, Papillier P, Monniaux D, Guerif F, Dalbies-Tran R. Leukaemia inhibitory factor modulates the differentiation of granulosa cells during sheep in vitro preantral to antral follicle development and improves oocyte meiotic competence. Mol Hum Reprod 2021;27(9):gaab051. google scholar
  • 22. Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, et al. google scholar
  • 23. Shin YW, Bae EA, Lee B, Lee SH, Kim JA, Kim YS, et al. google scholar
  • 24. Park SM,Ki SH,Han NR, Cho IJ, Ku SK, Kim SC, et al. google scholar
  • 25. Zhang SP, Zhou YJ, Liu Y, Cai YQ. Effect of liquiritigenin, a flavanone existed from radix glycyrrhizae on pro-apoptotic in smmc-7721 cells. Food Chem Toxicol 2009;47(4):693-701. google scholar
  • 26. Huang CH, Wang FT, Chan WH. Prevention of ochratoxin a-induced oxidative stress-mediated apoptotic processes and impairment of embryonic development in mouse blastocysts by liquiritigenin. Environ Toxicol 2019;34(5):573-84. google scholar
  • 27. Jung EH, Lee JH, Kim SC, Kim YW. Ampk activation by liquiritigenin inhibited oxidative hepatic injury and mitochondrial dysfunction induced by nutrition deprivation as mediated with induction of farnesoid x receptor. Eur J Nutr 2017;56(2):635-47. google scholar
  • 28. Huang CH, Chan WH. Protective effects of liquiritigenin against citrinin-triggered, oxidative-stress-mediated apoptosis and disruption of embryonic development in mouse blastocysts. Int J Mol Sci 2017;18(12):2538. google scholar
  • 29. Köktürk S, Ceylan S, Etus V, Yasa N, Ceylan S. Morinda citrifolia l. (noni) and memantine attenuate periventricular tissue injury of the fourth ventricle in hydrocephalic rabbits. Neural Regen Res 2013;8(9):773-82. google scholar
  • 30. Almubarak AM, Kim E, Yu IJ, Jeon Y. Supplementation with niacin during in vitro maturation improves the quality of porcine embryos. Theriogenology 2021;169:36-46. google scholar
  • 31. Choi H, Lee J, Yoon JD, Hwang SU, Cai L, Kim M, et al. The effect of copper supplementation on in vitro maturation of porcine cumulus-oocyte complexes and subsequent developmental competence after parthenogenetic activation. Theriogenology 2021;164:84-92. google scholar
  • 32. Tripathi A, Shrivastav TG, Chaube SK. An increase of granulosa cell apoptosis mediates aqueous neem (azadirachta indica) leaf extract-induced oocyte apoptosis in rat. Int J Appl Basic Med Res 2013;3(1):27-36. google scholar
  • 33. Gallegos E, Ascona M, Monroy J, Castro-Manrreza ME, Aragon-Mardnez A, Ayala ME. P-chloroamphetamine decreases serotonin and induces apoptosis in granulosa cells and follicular atresia in prepubertal female rats. Reprod Toxicol 2022;110:150-60. google scholar
  • 34. Saini S, Sharma V, Ansari S, Kumar A, Thakur A, Malik H, et al. google scholar
  • 35. Boldura OM, Marc S, Otava G, Hutu I, Balta C, Tulcan C, et al. google scholar
  • 36. Cordova A, Miranda MS, King WA, Mastromonaco GF. Effects of EGF and melatonin on gene expression of cumulus cells and further in vitro embryo development in bovines. Zygote 2022:1-11. doi: 10.1017/S0967199421000940. google scholar
  • 37. Sanchez-Ajofrinab I,Martı'n-Maestrob A, Medina-ChâvezbJuan DA, Laborda-Gomarizb JA,Peris-Frau P, et al. google scholar
  • 38. Qian Y, Zou X, Liang X, Lu N,Cui Y, Liu J, et al. google scholar
  • 39. Zhanga M, Xue Y, Zheng B, Li L, Chu X, Zhao Y, et al. google scholar
  • 40. Yuan X, Wang Z, Zhang L, Sui R, Khan S. Exploring the inhibitory effects of liquiritigenin against tau fibrillation and related neurotoxicity as a model of preventive care in alzheimer’s disease. Int J Biol Macromol 2021;183:1184-90. google scholar
  • 41. Choi EM. Liquiritigenin isolated from glycyrrhiza uralensis stimulates osteoblast function in osteoblastic mc3t3-e1 cells. Int Immunopharmacol 2012;12(1):139-43. google scholar
  • 42. Shi C,Wu H, Xu K, Cai T, Qin K, Wu L, et al. google scholar
  • 43. Nilsson EE, Kezele P, Skinner MK. Leukemia inhibitory factor (lif) promotes the primordial to primary follicle transition in rat ovaries. Mol Cell Endocrinol 2002;188(1-2):65-73. google scholar
  • 44. Eckert J, Niemann H. mRNA expression of leukaemia inhibitory factor (lif) and its receptor subunits glycoprotein 130 and lif-receptor-beta in bovine embryos derived in vitro or in vivo. Mol Hum Reprod 1998;4(10):957-65. google scholar
  • 45. Eswari S, Sai Kumar G, Sharma GT. Expression of mRNA encoding leukaemia inhibitory factor (lif) and its receptor (lifr|3) in buffalo preimplantation embryos produced in vitro: Markers of successful embryo implantation. Zygote 2013;21(2):203-13. google scholar
  • 46. Taghizabet N, Khalili MA, Anbari F, Rahimi AA, Nottola SA, Macchiarelli G, et al. Human cumulus cell sensitivity to vitrification, an ultrastructural study. Zygote 2018;26(3):224-31. google scholar
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri
Bölüm Araştırma Makaleleri
Yazarlar

Emel Usta 0000-0002-8549-0314

Sibel Köktürk 0000-0001-5636-3300

Sibel Doğan 0000-0003-4627-478X

Ayşe Altun 0000-0002-2765-5766

Sibel Bulgurcuoglu Kuran 0000-0003-4267-2158

Feride Özdemir 0000-0003-1327-9146

Proje Numarası ÖYP proje numarası : 393.2019-DR-35/27-01
Yayımlanma Tarihi 16 Kasım 2022
Gönderilme Tarihi 21 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 5 Sayı: 3

Kaynak Göster

MLA Usta, Emel vd. “İNFERTİL HASTALARIN GRANÜLOZA HÜCRELERİNDE LİQUİRİTİGENİN’İN LÖSEMİ İNHİBİTÖR FAKTÖR RESEPTÖRÜ ÜZERİNE ETKİLERİ”. Sağlık Bilimlerinde İleri Araştırmalar Dergisi, c. 5, sy. 3, 2022, ss. 172-8, doi:10.26650/JARHS2022-1129686.